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Abstract

What times can we expect athletes to run at the London 2012 Olympics? This is the basis that
inspired me to explore the main question | will be answering, whether statistical forecasting
can be used to predict reliable results for running times of the future. The purpose of this
project is to see where the human body has limits and if we can foresee these results using
mathematical modelling. 1 will be collecting data from online resources, processing this data
through analytical forecasting and then modelling. The Project includes mathematical
forecasting to predict an ultimate record for the 100 metres, 1500 metres and the marathon. |
will be comparing my work with previous studies in similar areas, such as work related to the
mathematics of running speeds to finding extreme values and the effects of age on running
performance. The diversity of my studies will hopefully enlighten us on what the optimum
age is for achieving these world records, as well as finding what the limits for each age

range.
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0.1 Introduction

Athleticshave always provided a limitless source of fascinating and imposing problems in many
fields, one of them being mathematics. Mathematicians have tried to model improvements in world
records over timeproducing a model with impeccable predictions to diaies not always mean it can
predict the futureMany mathematical studies have attempted models for the development of running
events world records. The most interesting beirigst focusing on 10@netresto the marathon, and
Nevill and Whyté proposingonger distances from 80@etresto the marathomcludingboth men

and womenBlests results for the 10@etreswere a littlehigher than predicted, but this could be due

to the unexpectesharp decay in the last 10 years of the d@@resworld record but the marathon

falls in line with the results predicted in chapter 3.

The problem with the mathematician modelling of athletics is the amount of variables which change
from event to event, from wind the advancement in technology, training, physigland even the
mental state of the athletethough these vaables are occurringne thing can be certain that the
records set in different running events shed light on human limitations, thus providing data for
mathematical investigationBreaking vorld records hago sign of stopping, even though currently

the world recordor 1500metreshas been set in stone fogarly 14 years, thus exposing our

limitations. So gven the progression of the world records up to now, can we predict the ultimate

world record?

Human nature being what it is, people train just hard and long enough to atlgiegeal but no

more. Every athlete that sets a new world record pushémtimelary, breaking the limitations of

what we know of mans best. Dedication, determination, motivation will drivatkidetes to new

levels, not anyone can break a world record let alone run a marathon as stated by Jermone Drayton
(Canadian marathonrecbr h o ltoddceeas)c rii be t he agony of a marat hon

it is like trying to explaincolout 0 s omeone wh¢l92as born blindod
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0.1.1 Specific Functions

The thredlistances | will be cgering are, shortLO0 metre$, middle (1500metre$ and long

(Marathon). The world records to date of each event will be used to produce a decaying graph, and
when adding a trend line with the most accurate fit it will produce the predicted limitations of each
event. To get the mostccurate trend line several functions will be asserted to the world resonals,
functions that were presumed to be a better fit did not always give tteenmtése trendBlest,

attempted the logistic, exponential and linear functidmgalsotested tle Gompertz function, which
surprisinglyd i dautdallygive anaccurate fit against my three distanc@s | ruled this ouf

The table of functions on the next pgdable 1)wasproduced by Dr MichaélcCabe(2012) from

this functions were selected to be fitted with a Macro in Microsoft Excel.
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Model Function r(t) r(0) Limitt- o Comments
Linear 5 0o & o Equal annual progression; O after t = a/b
Whipp and Ward 1992 Tatem et al. 2004
. ) Decreasing annual progression, initially @
Reciprocal — o a !
i @ 0 Deakin 1967
Harmonic » ol b o7 & s See http://plus.maths.qrg/content/no—l|m|ts—
[ T X XCP usain
W O 3
Arithmetic > ; : w H
Cw O pw
. " AR v adratic curve with minimumc<0
Quaderatic O wgqw & Ho Qu ratic curve wi inimu
Initial decrease, then increase
. W7 WpPZ W . . _ . -
Geometric 07 % w W w Proportional annual progression to limit
Linear Quotient » o Numerator increases; denominator decreases
Log Quotient w OBG 80 e ® o Could use logg
P waa& p
Exponential O 00 O @
Modified Weibull O Q7 W p @ Generalises exponential
Logistic I = w w
g pZ OQ Pz
Gompertz a + b g &rlcltd] a + b eeled a Kuper and Sterken 2006
Piecewise exponential a;+ b; edt ap + bo an

(Table 1) A table with specific functions and there limits that could be used to fit trends.
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0.1.2 Explanation oMacro

The macro in excel is very general and can be used to fit any function to a selected number of data
points, obviously the smaller sums of squares the more accurate the fit. The programme for the macro
is situated below and explained:

This macro is for the linear 100etres
Sub Linear100m() fit, the macro sets the sum of all the

Range("E111").Value = 100000 squares to an extremely high number
For a =10.47 To 10.5 Step 0.001 being 100,000. Then a range of
For b = 0.0075 To 0.0085 Step 0.00001
Forc=1To1Step1l

Ford=1To 1Step1 a b d with a selected step size so the

paranetersareselected for the variables

Range("K2").Value = a macr o doeossondet t i me

Range("K3").Value=b
Range("K4").Value = c The sums of the squares are totalled

Range("K5").Value = d
gel ) from the world records and selected

If Range("E110").Value < Range("E111").Value Then variables, if the sums of squares are
Range("E111").Value = Range("E110").Value ) S
Range("12").Value = a smaller than the previous then thidlwi
Range("13").Value = b be selected as the new best fit, hence
Range("l14").Value =c ) o
Range("I5").Value = d why 100,000 was picked for the initial
End If number.

Next d ) ]
Next ¢ Selecting the begtaranetersthese will
Next b then be showim column |, giving me
Next a

Range("K2").Value = Range("12").Value the numbers for the start and ending
Range("K3").Value = Range("13") Value limit, as well as the sums of squares
Range("K4").Value = Range("14").Value

Range("K5").Value = Range("I5").Value which will bethe three variables | will
End Sub take into account wén selecting the best
(Fig 1) function.

Fig 1 shows Macro used in Microsoft Excel

The macro can run for each distance h@#ires 1500metresand the marathon. It produces the
multiple graphs in chapter one, two ahdee. At the end of the chapters | will explain which function
gives the best fit and what the prediction it gives. Tiherontinuation | will look aall the distances
collectivelyto see if there is a single fation which gives the best accuracy. hetsecond part of
chapter 4 | will be explaining what | would have liked to do to continue my predictions, showing an
example of the extreme value theorem for the m@€resproduced bylohn H.J. EinMahl and Sander
G.W.R. Smeets.
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Physiology and age factovgll be myfocus in chapter 5, showirfgpw they affect running times for
athletesThe three physiologgarameters$ will be focusing are, maximum aerobic power, anaerobic
power and endurance, using these in the model produdeérbypnetand Thibault.The model has

been used in maple, using the fastest times for each distance for certain ages; it will fit the closest
estimated time to the real one using the tipa@ametersThe programme works the same as the
macro using a selected range for epataneterwith a step size. When the thnggrametersiave

been concluded for each age group | will see how they fair in trend against an increasing age.

The work in this project suggests limitations in betbrld records and physiology, seen as absence of

limitations would lead to unnatural unbounded possibilities.
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Chapter 1  Forecasting Predictions and Analysis of the 100 Metres

1.1 Overview

The 100metressprint has beerihe most prestigious track eventthe history of athletics. It is the

shortest outdoor distance and vdver holds the world record adofitsh e name fAf astest ma
in the worl do. A t it |betashtimdgdes b straggléodake ovevtber t he vy e
title of fastest man or woman becoma®mreappaent. Or does it? Usain Bauccessfully smashed

the world record for the hundredetresfor the third time in Berlin 2009, achieving a time of 9.58

secondsThe effect of Bolts times on the world record are clearly shiowre dramatic using

mathematical modelling biReza Noubary

This progression is explained well by Kuper and Sterken (2R7#vho found thafiln the early

phase of the development of running events, competition is not fierce, and amateurism doftinates.
the infliction point the rate of progress is large, because more sportsmen get involved, more
professional help is available, rewards become more visible, etc. After this rapid development phase
there is a phase of saturation. It is hard to improvedberd and only at a few instances a highly

talented individual i s able to break ito

This result as well as the previous two world records set for theng@@shas dropped the estimate
for the ultimate world record by a significant amount. The results | am produoimgsveral
different trendgpredictthatthe wotd record will be at 9.35 seconds in the next 100 yearshend
ultimateworld record could fallijist above the 9 second barri€his rumber also agrees with severa

publications that use bo#imilar and different techniques.
1.2 ExternalVariables

There are many reasons for peoplebds wunc,duet ai nty
to other interfering factors, such as the wind, drugs and advancamutknology The progresin

technology has come hand in hand to produce faster and faster times, for instance in 1912 running
spikes, starting blocks and polyurethane tracks wherinse. The wind is aotherkey factor and

can determine the difference of the world record, a 2m/s wind assistance could amount to around 0.1
secondsThere is nothing | can do about the advancement technology, but times which have been

banned due to dg usage and high winds will not be counted in my results.
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1.3 Performance Data

| have collected data for the hundmaétresirom the IAAF data basand have filtered every world

record from 1912 to the present dalhere are 17 world records in all. Using Microsoft Excel | will

be plotting the world records against the year. Once the results are up on the graph | will use a Macro
created in Excel to fit the best trend line to the data. The Macro has been wifit@nttend line on

the graph according to the function given, filtering through all possible combinations of numbers for
the selected variables. Each of the variables has been checked to 5 decimal places in s®ue cases
the results are as accurate asdegl for the purpose of the prediction. Filtering through it will select

the best combination of numbers which produce the smallest difference in sums of the squares. The
smaller the difference the better the trend line has fitted which thus should giheshest prediction.
Although as we will seesome of the better trend lines may not be as good as they make out as their

limits are rot realistic and tend to giwenreliable predictions.

I will first give an oveview of each function and theiisual rgpresentation on a forecasting graph.
Then subsequently will draw up a table and go ovestime of square® determine which is the most

accurate and make my own prediction using these results.
1.4 Visual Representation of the Hundig@tresProgression

Using the IAAF data the first Graph can be produced showing the fall in running time against the
starting year 1912 to the current year 100 on thaxis (Fig 1.1)

World Record (Fig 1.1)

10.8
10.6 L

- 10.4 L 4
= 2
9 10.2 4
ﬁ 10 ¢ *
GE" 1 4 ®e @ World Record
= 938 "’o—‘

9.6 2

9-4 T T T T T

0 20 40 60 80 100
Year Post 1912

Fig (1.1) shows the 100 metre world record progression over thEd@stears
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The world record progression shows a significant drop imtbstrecent 5 yearghis is due to Usain

Bolt going against the odds and breaking the world record three times. If the last three times were not
included one can make out a fairly smooth curve presenting a limit planever with Bolt'secords

included this will drop the overall ultimate redo Peter Weyand, a physiologist at Southern

Methodist University in Dallgsvho focuses on the biomechanicgwhningfor over 15years said

that, 'Boltisan out | i er .. %Mse dist éesnoad moaursl d record it has t
Weyandsaid this is a very rare occurrence and has shattered predictions.

14.1 Linear Model and Macro Validation

Linear (Fig 1.2)

; ¢ World Record
[%2)
10 \

=

S ¢ i
@9.8 e \lacro (Linear)
L2956

8-8 T T T 1
150 200

100
Year Post 1912

Fig (1.2) shows the 100 metre world record progression over the last 100 years, with a linear trend
line and macro validation (black lipe

Fig (1.2) shows the |inear fit through the world
it comes to the limiting factor, it will continue going till it hits zero which you would have to be

travelling faster than the speed of light thi@ve. So the prediction is very unrealistic. The other big

reason for plotting this trend line is to show the macro created is working. As the red trend line

created from the Macro fits the same linear trend line from Excel we can presume it is wiaking f

and move on to further testing.
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1.4.2 Quadratic Model

Quadratic (Fig 1.3)
10.8
10.6 l’
10.4 \
2 10.2 *
5 10 ¢ World Records
(&)
B}
S 98
S = Quadratic Fit
= 9.6 L 2
\
9.2
9 T T T 1
0 50 100 150 200
Year Post 1912

Fig (1.3) shows the 100 metre world record progression over the last 100 year, with a quadratic trend
line and validation (black line).

Fig (1.3) shows theugdratic fit through the world records but this time comes to a curving point
showing the limit will not tend to zero. The lower bound limit of the function hits a reasonable 9.146
seconds prediction in the year 2186. The problem is the function therdasdtar the plateau

meaning this giveanunrealistic prediction after the year 2186.

1.4.3 Linear Quotient Model

Quotient (Fig 1.4)
10.8

10.6

10.4 -
10.2 ? ¢ World
Records

=
o

9.8

e Quotient
9.6 L \ Fit
9.4 ~—
9.2
9 T T T 1
0 50 100 150 200
Year Post1912

Time (Seconds)
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Fig (1.4) shows the 100 metre world record progression over the last 100 years, with a linear quotient
trend line.

Fig (1.4) showsghe quotient fit through the world records, again the trend line curtfesid@tomes to

a lower limit of 8.148 Seconds in a very distant milljore atr ibree. The curve doesnot
decline as the quadratic but over time it shows a dramaticystiemdease. Both the quadratic and the

guotient have failed to pass through bolts incredible time of 9.58 seconds, showing that his

performance is well before its time. The 8.148 seconds prediction may not sound too dramatic as
advancements in technologiiet and training for athletes may help push to this barrier if athletics is

still around in a million years time.

Taking a prediction closer to date shows a more reasonable prediction, in 100 years time the 100
metresworld record will be 9.30 secondsodking at the data given in the previous hundregla r 6 s
man has shed around 1 secofidiee world recordso thregenthsof a second in the next hdred
doesndt sound too unrealistic

1.4.4 Logarithmic Quotient Model

Log Quotient (Fig 1.5)
11
10.8
= 10.6 ¢ World
2 104 - Records
% 10.2 $
T *e Log
g 10 Quotient Fit
'_
9.8 \‘\%\
9.6 ¢ —
9.4 T T T 1
0 50 100 150 200
Year Post 1912

Fig (1.5) shows the 10@etre world record progression over the last 100 years, with a log quotient
trend line.

Fig (1.5) shows the log quotient fit through the world records but the trend line is not what was
expected and doesnboteryfwelltThetreneihewioes & satisfaceofit aprtad t r en d
1996 but then ceases to remain close to the more recent world records as they dramatically drop over

the last 7 years. The limit of the trend line is integer b/c which equates to 0.004, showing that the

trend line reacbsan impossible time for theDD metres
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1.4.5 Logistic Model

Logistic (Fig 1.6)

10.8

10.6 L

10.4 §\
m
= 10.2 ¢ & World Records
g 10
3
~ 9.8 -
g Logisitc Fit
= 9.6 * \

9.2

9 T T T 1
0 50 100 150 200
Year Post 1912

Fig (1.6) shows the 100 metre world record progression over the last 100 years, with a logistic trend
line.

Fig (1. 6) shows the logistic trend line of the world records. The trenditisneery well apart from

the last two world records but this was expected. The trend lines limit is at 9.01 seconds which is
reached in just over a 10§0e a r s. ©he togistitdit shows a smooth decrease in time but slowing
down as time goesn, this poduces realistic oabme of 9.48 seconds in the next 50 years and 9.34

seconds in the next 100 years.

1.4.6 Harmonic Model

Harmonic (Fig 1.7)

11

10.8
—~ 10.6
3 ¢ World
S 104 * Records
T 102 -
% 10 e === Harmonic
= Fit
CR: —_—

9.6 *

9.4 T T T 1

0 50 100 150 200
Year Post 1912
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Fig (1.7) shows the 100 metre world record progression over the last 100 years, with a harmonic trend
line.

Fig (1.7) shavs the harmonic trend line through the world records. The harmonic trend line is very

similar to the log quotient but the harmonics trend line will keep descending till negative numbers
which is not possible so t hieraedldhedrendlimefsswélt gi ve
until again 1996 where it fails to follow the tr
current world record.

1.4.7 Exponential Model

Exponential (Fig 1.8)

10.8

10.6 L

10.4 +
o \ ¢ World
8 10.2 L 2 Records
§ 10
% 9.8 Exponenti
1S al Fit
= 9-6 * \

9.4 —

9.2

9 T T T 1
0 50 100 150 200
Year Post 1912

Fig (1.8 shows the 100 metre world record progression over the last 100 yearanexhonential
trend line.

Fig (1.8) shows the exponential trend line through the world records. The exponential has a limit at
9.03 seconds which is predicted to be achievedughly 1000 years. The exponential decay of this
trend line has givea good fit and prediction fahe near and far future. The only outlier is again

Bolt's current world record which is before its time.



Mathematical Forecasting of Running Limitations C Shaw 478065

1.4.8 Arithmetic Model

Arithmetic (Fig 1.9)

10.8
10.6 L

10.4 \

¢ World
Records

Arithmetic

M N Fit

Time (Seconds)
[E=Y

o O = O
a 00 O N

S

/

Lo
)

/

o0
[

0 50 100 150 200
Year Post 1912

Fig (1.9 shows the 100 metre world record progression over the last 100 years, with a Arithmetic

trend line.

Fig (1.9) shows the arithmetic trend line through the world record. This is very similar to the linear
but there is a slight curve ihé trend line showing a good fit through the world records but as time
goes on the prediction becomes more unrealistic as the limit for this function is minus infinity passing

through zero makes this impossible, thus rules out arithmetic.
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1.5Mathematical Analysis

. Present
Model Limit _ _ Sum of
Function F(t) F0) t© b F(0) = Dgy_ F(200) = Squares Rank
Prediction
o 0o & b | 10491 9.671 0.05238
Quadratic | ¢ ®O0 &) 15 10.520| 9.696 0.04922 4
Linear ® WO 3 »
Gliotient T &) = 9.707 0.04762
_ o 1o p »
Log Quotient — &) . 10.94  9.806 9.660 0.004 0.16415 7
o 1o p &)
Logistic e 0o @ () 9.709 9.350

D) 9.808 9.665 Ho 0.18916 8
O R O O M 9.337 0.04859 3
O 0
Arithmetic — . &) D) 10.49 | 9.672 8.850 Ho 0.05280 6
CCW 0 pPpw

(Table 3 Shows the model functions, there initial and final limit and tlseira of squarewith ranked order.The table is colour codededis extremely
unlikely, orange is possible and green is most likely or nearest the real life. The model function column having theicdimal

. O o b T
Harmonic b H
L T® X X G
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Table 2shows each function, its starting point and its ultimate limit as time tends to infinity. The
table also showthesum of squargghe closer the number ig zero the better fit of the functions

trend line. Using both these variables together to determine which of the functions gives the most
likely prediction.

The present day predictions using the trend line are all completely above the actual world record this
because as previously stated Boltdés time is an o
they all are incorrecilhe final limit and sumsf squares are the most important factors which have to

be plausible, followed by initial limit and present day.

The limitations for the harmonic, linear, arithmetic and quadratic get more unrealistic as time goes on
either heading to plus or minuginity. Although the initial descending half of the quadratic curve is

very accurate and produces a realistic 9.248 seconds in 100 years time and a lower limit time of 9.146
seconds achieved in 175 years time.

The log quotients limit is 0.004 which is justw@agealistic as the previous functions and as well as
this has the second highestm of squaresuling this function out.

The top thresum of squareghe linear quotient, logistic and exponential functions all come out

below 0.05 of a difference, shavg a very accurate trend line. The linear quotient comes on top of the
accuracy of fit of the trend line, but then has an extremely lower final limit than the logistic and
exponential. This lower limit is compensated by the time it takes to reach it #kisgnit more

realistic due to advancements in the sport, but taking over a million years to reach 8.148 seconds, the
limit lies a bit far out the predicting limit due to having data collected from only 100 years.

The combination of the small differenaethe sums of squares and the realistic limits make the
exponential and logistic functions the best trend lines for a prediction. The exponential has a better
starting limit as the world record did start at 10.6 seconds so | think this personally gilvesttfie

out of all the functions used.

A study with world record data from 1912002 concluded that the logistic and exponential came out

on top, although their predictions are a lot higher than tke bhave produced. This is digethe

world recor@ over the last 10 years, which have pulled down predictions due to the dramatic decrease
in times. bttp://condellpark.com/kd/sprintlogistic.hjm

The exponential predicts a world record of 9.48 seconds in 50 years time and ultimate world record
of 9.03 £conds, reached in around 600 years time.
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Chapter 2 Forecasting Predictions and Analysis of the 1500 Metres

2.1 Overview

The 1500metress the first of the track events which start to use more of the aerobic endutasmce
akin to the famous mile rubgeingjust undera mile(a mile beingl609.344metre$ and was
introduced on the 50Metretracks in continental Europe. The first official world recordisdi912
was under 4 minutes which is now the mile stone for the mileclitient1500metresrecord was set
in 1998at 3:26:00 byHicham El Guerrou(MAR), so the record has shby 30 seconds over a period
of 100 years. The 1500etresworld record over the last 100 years have been very tisgan more
so than that of th#00 metres

2.2 ExternalVariables

As well as the previously mentioned advancementechnology, therareother factors likehe

economic state of certain couls. For instance before the Second Worlar\tiere were no more

than 50 nationsepresentdat the Olympics, now there are over 4 times that amount, all competing at
higher and toughestandards each year. The influencegbenomic statbas, is shown for example,

il n Ni g empapaation of @0 niilllon, the percentage of people abiake part in sport will

have increased from perhaps 10% when the country first started sending teams to the Olympics to

something over 60% now, bringing 50 million more people into contention in one country @one
2.3Performance Data

Again thedatal have collected for the 150@etreswill come from thed AAF data basendl have

filtered every world record from 1912 to the presentd&yrom the dataollectedthere are 27 world
records accounted for, atftesewill be put into Microsoft Excel. Agaihwill be using the Macro
adjusted for each function being used against the world record progression results. The results will
producethesums of squares similar to the lI@@trespreviously, and a limit on the ultimate world
record both of these thingsihbe taken in to account to find the best function for an ultimate

prediction.

| will first give an overview of each function and there visual representation on a forecasting graph.
Then subsequently will draw up a table and go over the sums of stpudetsrmine which is the

most accurate and make my own prediction using these results.


http://en.wikipedia.org/wiki/Hicham_El_Guerrouj
http://en.wikipedia.org/wiki/Morocco
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2.4Visual Representation of the 15M&tresProgression

World Record (Fig 2.1)
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Fig (2.1) shows the world record progression of the 1500 metres over the last 100 years.

Fig (2.1) shows a very linear decay in time over the p@8tyears, althougtie world record has not
been broken in the last 13 years. As well asfthism 1985 there has only been 3 new world records,
soit would appear the frequency of breaking theldioecord is slowing down as it becomes ever
harder to beat.

2.4.1 Linear Model and Macro Validation

Linear (Fig 2.2)

250

240

230 -
= ¢ World
= 220 Records
e}
by 210 = |inear Fit

£ 200
o \
.E 190 \ ——Linear (World
180 \ Records)
170

~
160 T T T )
0 50 100 150 200
Year Post 1912

Fig (2.2) shows the world record progression of the 1500 metres over the last 100 years, with a linear
trend line and validation.

Fig (2.2) shows the linear function trend line through the world records the line is a very good fit

through the data but is limited again by its predictionggwn limit. Its limit tendgo minus
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infinity passing through zero which is unrealisticttie near future the trend line might produce
accurate predictions but the further away in time the prediction will be less accurate. Also the linear
functions trend line produced by the macro fits the trend line given by excel proving the macro is

working correctly for the 150@netres

2.4.2 Quadratic Model

Quadratic (Fig 2.3)
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Fig (2.3) shows the world record progression of the 1500 metres over the last 100 years, with the

guadratic trend line.

Fig (2.3) shows the quadratic trend line through the world recordst theéry good and this time

the trend line start to slow down decaying as time goes on till it hits a lower limit. The lower bound
limits at 181. 75 seconds (3min 1.75 seconds) in 150 years time which sounds feasible? The problem
again with the quadratis that once it passes the lower bound it then increases to infinityeas t

tends to infinity. S@gainthe beginning half of thiinction acts as good predictarbut t is logical

to ignore the second half.
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2.4.3 Linear Quotient Model

Quotient (Fig 2.4)
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Fig (2.4) shows the world record progression of the 1500 metres over the last 100 years, with a linear
guotient trend line.

Fig (2.4) shows the quotient trend line through the world records. The fit through the points is as good

as the quadratics but the prebi is like the previous quotient in the 1®@tres the limit of the

function tends to 83.67 seconds in again a very
taken as the data only spreads over 100 years and to predict a result a mitBdn ffeafuture is

ludicrous due to other unknowactors.

2.4.4 Logarithmic Quotient Model

Log Quotient (Fig 2.5)
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Fig (2.5) shows the world record progression of the 1500 metres over the last 100 years, with a log

guotient trend line.

C Shaw 478065

Fig (2.5) shows the Log quotietrend line through the world records and does not produce an

accurate fit.

The trend | ine doesnot even

The limit of the trend line is integer b/c which equates to 0.002 showing this trend thesem

impossible time for the 1500etres

2.4.5 Logistic Model

Logistic (Fig 2.6)
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Fig (2.6) shows the world record progression of the 1500 metres over the last 100 years, with a

logistic trend line.

Fig (2.6) shows the logistic trenahé through the worldecords thafit the slow decent in the trend

line till it reaches its limit at 182.lesond93min 2.1 seconds Thisrecord is predicted iless than
1000 years and it alqaredicts a realistic time of 3 min 11 secofsiseddingl5 secondsin 100

years.Althoughthis sounds realistibase on a 100 years of data for a prediction just underC® 10

years in thduture we should not be fooled asmparing thesum of squareseems tshow us

something different.

t

t

h
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2.4.6 Harmonic Model

Harmonic (Fig 2.7)
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Fig (2.7) showshe world record progression of the 1500 metres over the last 100 years, with a
harmonic trend line.

Fig (2.7) shows thaot sogreat fit of the harmonic trend line through the world records. The
harmonic function will decrease by a smaller integer atitieincreases but will never stop
decreasing meaning it will achieve the same as the log quotient reaching a negative limit eventually,

this being impossible. Also the trend |ine predi
record of the currdrday, ruling this function out.

2.4.7 Exponential Model

Exponential (Fig 2.8)
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Fig (2.8) shows the world record progression of the 1500 metres over the last 100 yeans, with
exponential trend line.
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Fig (2.8) shows the much better fit of the exponential trend lirigiir the world records. The

exponential has an ultimate world record limit at 2 min 39.4 seconds, which being 1200 years away

makes it t hat littl e

bit

mor e

real

i stic,

but

exponentiasum of squaresesults are to gauge whether the trend line is a good line to follow and

how realistic its proceedings outcome.

2.4.8 Arithmetic Model
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Fig (2.9) shows the world record progression of the 1500 metres over the last 100 yeans, with

arithmetic trend line.

Fig (2.9) is the last graph of 150@etresshowing the arithmetic trend line through the world records.

The line is very similar to the linear but unlike all the previous graphs it starts to curve decay at a

quicker rate as time pgoesses. The trend line continues till it passes through zero continuing to

minus infinity which throws this function predictor out as this not possible. Even though the future

predictions araot likely to beaccuratethe fit of the trend line to the wiokrecords are better than

some of the other functions, this will be shown in the next part when | companamhef squares

t



Mathematical Forecasting of Running Limitations C Shaw 478065
2.3 Mathematical Analysis
_ Limit Present day Least
Model Function F(t) F(0) F(0) = o F(200) = Rank
tO Hb prediction Squares
O 0o Hb | 236.29 52.075 5
Quadratic O DO G K | 238 Ho 43.359 2
: : 0w WO . A
Linear Quotient — W - 43.535
P WO W
W &N) 255 211.52 206.75 0.0002 546.90 7
W
5
7 W - 204.19 196.35 - 71.553 -
P W
H Ho 211.35 206.07 -Hb 584.35
M ® W . 202.16 | 183.07 | 159.4
W H | 234.8 45.56 4

199.36 155.30 H

(Table 3 shows tle functions used previously, théiitial and finallimits as well as theisum of squareand thereank. The table is colour coded, red is
extremely unlikely, orange is possible and green is most likely or nearest the real life. The model function columnelirafiirad) ditcome.
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Table 3shows the model functions, their limits and sluen of squaresl’hesums of squares have

been ranked in der; from the bestffi(1) ascending rank to the worst. Téwems of squares atlee

main aspect to determine the best predicting function, but I will also take into account the limits both
starting and ending.

The present day predictioase very useful in this table, unlike the 100 metres previously. The log
guotient and the harmonic are ruled straight out because they are langireticarrent world record.

The arithmetic and linear functions prodwegremely low times which aréseconds off the world

record as welds thdinear quotient and quadrati@arly reaching these extremely low times as well.

All four of these functions have predicted a lower time that | think personally can be achieved.

Logistic and exponential functiorse the two functions which look most realistic knocking 2 seconds
and 4 seconds off the world record respectively, but the logistic is the nearest to the present day world
record, even so the other factors Igken of squareseed to be taken into considéon.

The linear, arithmetic and the harmonic functions all have a final limit of minus infinity which is very
unrealisic. The arithmetic and linear hasvery rapid decay in time compared to the harmdnit
sum of squareshow a better fit to the wigl records. So yet again like the 10@tresl will rule these

functions out.

The log quotient function is not drastically better than the previous functions; the least square fit is 8
times larger than the next in rank. So the trend line isn't an aeditras well as this the limit

reaches 0.0002, which again wowoldy be possible if travelling at the speed of light. So again the log
guotient has produced an unrealistic limit like the &r@@resand will most likely produce similar

results for the mathon.

The quadratic function produces a better fit, it actually comes 2nd in rank furthef squareand
the lower limit is 3 minutes 1.84 seconds in 150 years time, which is plausible, but one other thing lets
the function down. After the functiaeaches its lower limit it then ascends back up to infinity,

spoiling the quadratics predictions.

The linear quotient is positioned third in them of squaresank, but there is only a 0.3 diffence
between it and thiirst rankedfunction. The downfall for this function is the final limit, reaching 83.6
seconds (1mi23.6 secongswhich for me appeat®o extremeasthe world record ovethe past 100

years isplateauingandhas only dropped by just under 30 seconds.

The logisticfunction has the opposite problem,stsm of squares nearly twice the size of the linear
guotient, but the limit is a lot more realistic 3 min and 12 seconds, knocking off 14 seconds off the
current world record. Visually the fit for the logistic loakpretty accurate but the least square proves

this wrong, showing going by visual representation alone would not be satisfactory.
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The only function with an overall better fit and limits is the exponential, this agreeing with other

peoples work shown in chter 4. The least square is the highest ranked, thus producing the closest fit

to the world record points out of the functions used. The final limit is producing an ultimate world

record of 2 min 39 seconds, which is a bit lower than | would have exp&ci@doduce a time like

this an athlete would have to run each h#restretch in 10.62 seconds, which could be possible in

1000 years when the function predicts. Closer to home, the 100 year prediction is 3 minutes 3.07
seconds, which is scrapping 24aeeds of the current world record. As previously stated the world

record has dropped by 30 seconds over the last 100 years so 24 seconds might be possible depending
on the plateau ofuture times, but any further might be a struggle.

The predictor is hartb call between the exponential and logistic betause the present day results
are closer, theum of squaresot being drastically different and the exponential limit just seeming too
far to reach, | think the logistic just pips it.

The economic and thoologicalfactors will account for the linear progression of the records over

most of the modern era, but in both the 1500 andmi€@eswe are seeing a reduction in the decay of
times. The 100netrestook 70 years for it drop by a second, and since 1t9&&s only dropped 0.37
seconds. So clearly man is reaching his physical limits in sprint and middle distance events, but is this

the same for longer distances like the marathon?
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Chapter 3 Forecasting Predictions and Analysis of The Marathon

3.1 Overview

Over 2500 years ago a Persian king sent out thousands of his troops to Greece to punish the Athenians

for mocking and not abiding his offers. The Athenians were ready for battle surprising the Persian

king and his troops, even though the Atheans wer end6t the finest of sol
neighbours; they still managed to win victoriously at the city of marafhioa fleeing Persians set

sail for Athens seeking revenge, so the Athenian general sent his best messenger/runnelidBeidipp

to run back to warn the citizens of Athens of their pending davgePheidippides reached Athens

after a 26.3 mile run, beating the ships managed to spread the word ofthe Bensi t r oop &6s arr i
before his untimely deatliis heroic act savethany citizens and Athens, and thus why it is called the
marathon from the ancient Greek Olympics. Ctheryears the marathon welsanged to 26 miles

exact in 1908 and then the IAAF changed it to the equivalent of 42.195 Kilontétres.

3.2 ExternalVariables

The marathon time was set at 2:4@i84.912) but then i1921 the marathon distance was changed
from 24.98 miles to 26.3 miles. Ninety years later in 2011 the world record is currently 2:03:38
knocking off over 36 minutes, nearly a ¥4 of the previdme.t The mental and physical side of the
marathon is what sets it apart from other running and track events. The runners must overcome
physical and mentdiredness, this is evident as itthe only event to have water and nehrment
available during theace They need to know hotw economise their energy over lotdigtancs,

trying not to dissipate any unnecessary energy while keeping their endurance to thdéiighest

possible.
3.3 Performance Data

The continuing progression of the marathon redarslled people to question if and when someone
will run under 2 hoursThese questions | will try and answer usimgacro to fit different function
trend lines against the 28 previous world records, to see which has the most aceuratesquares
and imit. Using the data producerbi the graphs | will predict if the 2 hour marathon is possible

and if so when? Also | will be comparing this to external sources to make for a reliable.Enswer
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3.4Visual Representation of the Marathon Progression
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Fig (3.1) shows the world record progression in the marathon over the last 100 years.

Fig (3.1) shows the progression of the Marathon world records to date. There is a large brake between

1926 and 1947 where there were no new records set over 20 yeagesagpte say this was due to

the Second World War. In fact in the years 1940 and 1944 the Olympic Games were cancelled due to

the world war, as they were due to be held in Tokyo, Japan and London, Great Britain. The graph
shows the record was finally bref in 1947 but only by five hundredths of a second. The record
looks like and outlier, and splits the graph in to two from the 1947 world record we can make out an

exponential line decaying with time. If we removed the 20 year gap betweeavothecords 226 to

1947 therall of the points would make for a smoother curve. Even though this may be true | will be

taking the gap into account and see what the functions produce.

3.4.1 Linear Modebnd Macro Validation
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Fig (3.2 shows the world record progress in the narathon over the last 100 years, with a linear

trend line and macro validation.

Fig (3.2) shows the linear fit through the world records, unlike themi€@esand 1500metresthe
world records are less linear, and thus the linear trendinéis as accur ate. As well
from the limits previously picked up on, the lower and upper limit are infinite meaning that as time

goes on the graph gives more unrealistic predictions.

3.4.2 Quadratic Model

Quadratic (Fig 3.3)
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Fig (3.3 shows the worldecord progression in thearathon over the last 100 years, with a quadratic
trend line.

Fig (3.3) shows the quadratic trend line through the world record points. The trend line is very similar
to the linear model but has a slight curve to it slowing dtherdecay in time as the years ascend.
The fit isndbt as accurate as the quadratic has &

arend6t in as smoot hcesstudede as the previous distan
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3.4.3 LinearQuotient Model
Quotient (Fig 3.4)
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Fig (3.4 shows the world record progression in therathon over the last 100 years, with a linear

guotient trend line.

Fig (3.4) shows the Quotient trend line through the world records, the curve is the best fit visually so

far. It decays a lot less as the yeagsemds, smoothing out to a more realistic world record limit. The

trend line fits through the points apart from the 1947 world record which is not a surprise, again this
could be due to less training and tancelled Olympics due to the WorldaWover ths long period.

3.4.4 Log Quotient Model
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Fig (3.9 shows the world record progression in trerathon over the last 100 years, with a log

guotient trend line.

Fig (3.5) shows the log quotient fit through the world record points. The functicagdiit like

previously shows an inaccurate fit of the world record points. The function decays too fast up to year
35 (1946) and then abruptly slows down the decay, not reaching the current world record till 2111.
Even though the decay is slowing downthe end | i ne doesndét stop tildl

0.0001 minutes. So this function is therefore ruled out completely.

3.4.5 Logistic Model

Logistic (Fig 3.6)
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Fig (3.9 shows the world record progression in thexrathon over the last 100 years, with a logistic

trend line.

Fig (3.6) shows the logistic fit to the world records. It is a very precise fit and is similar to the
Quotient trend line apart from the decay slows down quicker producing a bigger lowelTlmait.
prediction for the 2 hour marathon is in 28 years time, and the ultimate world record of 1:51:18.
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3.4.6 Harmonic Model

Harmonic (Fig 3.7)
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Fig (3.1) shows the world record progression in the marathon over the last 100widaies.

harmonic trend line.

Fig (3.7) shows the trend line of the harmonic fir through the world records. The Harmonic fit is
better for this distance than the previous two distances but still not a great fit compared to the other
functions used. Again the problem with harmonic is thatrité lEontinues down to minus infinity

making this function produce unrealistic times.

3.4.7 Arithmetic Model

Arithmetic (Fig 3.8)
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Fig (3.8 shows the world record progression in trerathon over the last 100 years, with a

arithmetic trend line.

Fig (3.8) shows the arithmetic fit through the world record points. The trend line is very similar to the
linear trend line, and also has the same problems. The arithmetic fits lower limit is minus infinity
which is again impossible and the decay of the greiihyears is too extreme predicting a time of

1:46:42 in 50 years time.

3.4.8 Exponential Model

Exponential (Fig 3.9)
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Fig (3.1) shows the world record progression in the marathon over the last 1QQwiteas

exponential trend line

Fig (3.9) shows the exponentiaénd line through the world records. The trend line visually looks as
aesthetically pleasing as the quotient and logistic trend lines. The trend line also has reasonable limits

the lower being 1:57:36, which is near the prediction of the logistic tread lin
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3.3 Mathematical Analysis

Model Limit Present day Lim Sum of
_ F(t) F(0) F() = o F(200) = Rank
Function 0 b predictions tO b squares
O 0o R b | 2:33:38
Quadratic O WO W W b 2:33:32| 2:01:07 1:37:12 b 210.67 4
Linear O WO &)
_ — o - 2:38:00| 2:02:01 1:48:28 1:12:30 105.23 2
Quotient P WO W
_ © o 1o p . A
Log Quotient s ) - 2:51:48  2:07:59 2:03:23 0.0001 429.37
p w lo p W
. - w w 14
) 0 o) 2:38:46| 2:03:27 1:55:06 1:51:18 98.653 -
_ W o b7
Harmonic b H
[ ™ X X G

Exponential| & (O GO 6| O .38: 04: 1:58:42 | 1:57:36| 105.75 -
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(Table 9§ shows the predicting functions, there initial and final limits as well asshairof squareand the rank of thenT.he table is colour coded, red is

extremely unlikely, orange is possible and green is most likely oresedine real life. The model function column having their final outcome.
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Table 4shows each function in comparison with the marathon world records, showing their prediction
at 100 years in the future and their final limit. The table also showirgutheofsquareof the

functions trend line fit, the closer the number is to zero the better the fit. Thus taking the functions
with the best fit and most realistic limitations we should get a good predictor for the 2 hour marathon.

The present day predictionsezall fairly reliable all falling within4 minutes of the real world record,

but the two that stand out again are the exponential and logistic. The logistig @ut by 12 seconds

which equates to a incredibly small difference of 0.1% with respecetoutinent world record, so the

logistic function is looking like the best predict@he lower limis and the large rate of decay over

time yet again stop the linear, arithmetic and harmonic from being good predicting functions. They alll

have large valuesf sum of squareso theit r end | i ne doesndét fit the wor

The log quotient function has the largesin of squaregiving it the worst fit to the world records,
this has already been taken in to account when viewing the graphs. As well as the bad fit the lower
limit of ultimate prediction is 0.0001 seconds which is unrealistic and produced a similar outcome to

the two previous distances, ruling this function out.

The quadratic function is let down by its ascending sepantdof the curve, also this time the
function doesné6t fit as well as isamoflsquaresnd t he pr
producig a lower than expected ultimate world record of 1:10:47, which seems highly unlikely. So

the quadratic function is not significant at all this time.

The last three functions are pretty tight to call, but the linear quotients limit is nearly as low as the
guadratic which is a pretty extreme time to produce. The decay of the linear quotient is greater than
both the exponential and logistic, giving a time of 1:48:28 in 100 years, knocking off around 15
minutes. This seems highly unlikely as thers tialy b&n a 10 minute reductidn the time ovethe

past50 years. To produce the linear quotients ultimate world record the athlete would have to produce

26, 2:45 minute miles which is already breaking the world record for the mile in itself.

The final two functions are nearly identical apart fromghm of squareand ultimate world record

time are both | ower on the |l ogistic. The | east s
the starting limits are pretty much the same. [biggstic has the best fit out of the functiotisis can

be seen from the graph produced. The function predicts a time of 1:55:06 in a 100 years, and an
ultimatetime of 1:51:18. Both of these times are believable, with the help of advancing technology,
physiological training and economical states of countries. Taking the logistic as the predicting

function, the 2 hour marathon break through will occur by 2039. This result is backed up with several
publications and falls one year long of the previous prgjeediction, 2038 by Sam Glanville

(2011)"
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Chapter 4 Comparisons and Continued Study (Extreme Value)

4.1 Brief

In this chapter | will be comparing the different distances, and what factors affect specific distances
causing certain functions to be suitable for different distances or maybe multiple distances. | will also
be showing an extreme value theory applietheo100metreswritten byJohn H.J. EinMahl and

Sander G.W.R. Smeets, showing what | would have liked to have done with my own distances. | will
compare his predictions with my own from chapter 1 to see whether they back up on contradict.

4.2 Distinctionsand Discrepancies between Distances

All three events, 10éhetres 1500metresand the marathon are prestigious events but are very

different from one another. The physiology of the athletes is completely contrasted fronett&6€

to marathon. Does therlgth of the race affect its world record progression though? If so how?
Obviously the 100netresbeing an extremely short distance compared to the others, other factors are
taken into consideration. Wind éskey factor apreviously mentioned a strong lieaind can slow

an athlete by 0.1 seconds. Technologies, running blocks and spikes have been improving over the last
hundred gars pushing times down. Altliee 100metresis now measured pito hundredths of a

secondpeing timed by sensors, this could he teason for the increasehireaks inworld re@rds in

the paskO years, as before they would have just measured to the nearest tenth of a second. No matter

how the times are measured they are clearly coniloggto a limitation.

Athletes for the 150@netresare normally a lot lighter physically and rely on aerobic endurance

slightly more compared to the sprinter. The 15@iresis only measured to the nearest tenth of a

second as the distance is longer. The technology is not as important in this track event as the 100

metres Runner s dockadandthewr tuanmti ngn ch ot hes dondét have to
thewindd es ndt ¢ onemuchptexw aeifsfeedctheybdr e running compl e
This could explain why the 150@etresworld records follow a lot more of a linear trerdds

previously stated the increase in countgasticipating amount of athkes andmprovedtrainingand

dietwill most likely be the main factors to create new world recobdsstated here by Edward Coyle,

director of the Human Performance Laboratory at the University of T&¥add records continue to

improve for a lot of diances, and it's just because you get more talented athletes entering into the

event," and "As time goes by, you get more and more athletes who have participated. It's simply a

probability statement*

The marathon is the longest running event in the Oigsnjit is measured to the nearest second as it

doesndt need to be more precise due to world rec
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distances. Out of the three distances the maratmarld records look most likely to be hitting a

limit; this will notbedue to technology like the 10fetres just down to theraining, dietand fitness

of the athlete. The top maratimrunners will have to bieaining to extremes, to limits most humans
would say impossible and a lot of studies have shown the2rharathon is not possible. The
marathon runners have to possess asfggcificphysical traits. An extremely high VO2 max is
needed, as well as maintaining a high percentage of their VO2 max, are@0d®Ecent for long
periods of time. They mustalsohave googhysiologicaleconomy, maintaining a certain speed with a
limited amount of oxygen. | will go into more detail in chapter 5 surrounding this with model by
PéronnetTo attain all thee attributes pushes our species boundahies why the limit is ever getting

closer.
4.3 Comparing Distances with Functions

Even though the three distances are completely different, in length, physiology and technology
surprisingly two functions always come out on top as the best preditta@snarathon and 100
metresrankedsum of squarewere nearly identical, the exponential and linear quotient have switched
for top place. The problem with the linear quotient on all the distances is that the ultimate prediction
seemed a bit unrealistic &whieve, but | could be proved wrong, just like Usain Bolt obliterating the
world record out of nowhere. The logistic and exponential were always up with treeibest
squaresproving the most accurate predictors. The exponential functimsei to pedictthe 100

metresin my predictions, due to it being the most accurate and realistic limitalibasl500 meters

was stuck between the exponential and logistmputid potentially be turning point for the distances
beinga middle distanceWhereaghe longer distance, the marathon favours the logistic function. To
conclude this | would have liked to introduce more distances to see if they back up the functions, to
show a greater pattern. | thought the percentage of improvement to the ultimateeasorttmay

have been linked to the functions. This was not the case thméi®ésis predicted to improve by

5.8%, the 150@netresby 22.6% and the marathon by 10.0%. Even though they represent the

functions well, the figures are interesting.
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4.4 Final Commrison Conclusion

There is not a single function which describes the progression in athletic distances across the board.
The exponential function seems to have favoured the shorter distances, the 100 anetdés)0

Where the logistic function gives a better fit for the marathon world records, even though this is the
case, both functions come out on top for long and short distances. To reconcile the results given by
the particular functions | would have likediavwe compard more distancesnstead | am going to

present a study bjohn H.J. EinMahl and Sander G.W.R. Smeets, andsee what results they produce,
whether they are similar to my own predictions for the @@resor not. To extend my studies |

coulduse tlis method with my own variables, but will explain the procedures used to obtaifiJohn
EinMahl and Sander G.W.R. Smeptgdictions. This theorem could be used by the next project

student to carry on this study.

4.5 Extreme Value Overview

Extreme véue theory states the Maximum and minimum values on a continuous closed and bounded
interval. The extreme value theorem models the Extreme behaviour of the tail probability
distribution. The three distances previously predicted can be used with theeex&rien theorem, but

I will only be focusing on the 10@etredistance. To see what people predict the futures fastest man
and woman in the world could readfhe Extreme value theorem is ideally used because it predicts
the near future ultimate world rach given present knowledge and technoldjyere are two main

parts to the theorem for when the function is continuous for all x on a closed interval:

1. Being if the f(x) is bounded for all x on that intervahis means there is some uppeurd value,

that f(x) is never morthan, for all x on closed interval

2. There is one or more x=c, where c is on the closed interval making f(c) greater than or equal to f(x)
for all x on the interval. In short, f(x) has a maximum on the interval, using x's tthérmdaximum

values. . ( Same applies for lower bound but only focusing on upper limit speeds).
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4.5.1 Data

The extreme value data is taken frdmpersonal bestrties of each athlete acquired from the IAAF
website™> Times which include discrepanciage not included i.e. wind over 2m/s, blood doping or if

the time was disallowed or changed. Many of the times are available down to hundredths of a second,
and because many athletes share personal bests the data will show simultaneous results. So this
doesndt occur thus no est i mPetiNon apdvaskus @i88)Y t he

So atime 9.95 achieved by multiple athletes, (m) will get spread between the interval (9.945, 9.955)

as follows:

After this all the smoothed times are converted to speeds, this is simply done by distance over time.
The higher the speeds, the faster the time run. The table below shows the sample, notice that th
sampl e does n bdlts9.58sedondgsbecautkst &alls mutsiBle the selected sample. The

time was an extremely fast time and would have a lot of influence on the predicted time, so this result
is left out for this theorenThis is similar to me ignoring the world record when takirtg eccount

the present day predictions in table 1.

Event Sample size Fastest Slowest

100-m men 762 9.72 10.30

100-m women 479 10.65 11.38
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4.5.2 Extreme Value Theorer

The values are converted into speeds as they ascend which makes the theorem smoother to run, using
a simple distance over time to find average spBagpose thad i 8 8 i the speeds aei.i.d.
(identically independently distributeat)servationsvith continuous distribution function F. Let

by ®g E &g denote the corresponding order statistics, denotingthe world record.

Supposéhere exista sequencé  Tandd®sequencé such that the maximud ¢, (n=12,...)
scaled and appear betweén andc , convergingn thedistributionto a nordegenerate distribution
G: for all continuity points x of Ggivenbelow(De Haan and Ferreira (2006)9, Remark 1.1.5%:

Wb e e b e

Then the class of netlegenerate distributions that can occur as a limit in equation 1 is thefclass
extremevalue distributionsThis class iSO ¢ @ & h"0 is the extreme value distribution function,

with ¢>> 0 andbN s, where

M2 CHol rez [J-» se n

[ N g is the extreme value index. The extrewadue distribution is characterized by tadreme

value index , apart fronthe scale and location constanif equation 1 holds for G "9, then we say

that F is in the maxiomain of the attraction 60, denotecby "O8 'O "O . For a further detailed

description sed)e Haan and Ferreira (2006).

We are interested in theaxima point of the distributiodd O ® N adOw p . This
maximumis finiteif| 11, meaning and approximation faf can be obtained as follows. Rewriting

Equation 1 (by taking logarithms):

l@bﬂ =|=*=.0 -H—< .DTIﬁ° Ae7

With"O @ >0andd p8c and® are defined by interpolatiomhen t is not an integeFor large

values of t we thenave,

7T e < et
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Define®dy G @ to obtain

Now suppose that 1t Takeds , &3 being the right end poirgnd note thalOad  p. So we find,

with 0 - for some positive integer k much smaller than n,

L
o g

4.5.3 Estimators for th@araneters

Estimatingl , &, and®. Let, for2 'Q & p, introducedn Dekkers, Einmahl and de Haan
(1989)°:

Considering two estimators for~ 4. First is the moment estimator:

sh 1, -

The second is the maximum likelihood estimator or M&&e Smith (1987) Now defining the

following estimators foty y andcy :

And
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This article estimates the right end ptodf the distribution function F, which is the ultimate world

record. Gee e.g., @ Haan and Ferreira, 200@)e obtain, using equation 4, as an estirfiatey :

’ ‘H'.;fﬁ =|=.T?§8

Confidence interval for the ultimate wdmecord (end pointy we have under certain conditions

Qo  of I
—— 0 ¥ 1h
W7y [ p

q

p o T
8
p o p T ¢

See Dekkers et al. (1989, p. 1851)hese theorems habeen studied thoroughly anorfa more
detailed account seeelHaamand Ferreira (2006, chap 4). The choice of the number of upper order

statistics Q will account for the estimators pfandcs 8

4.5.4 Principal Threshold selection

To find a value k such that the AMSE (asymptotic mean squared errprisahinimized to give the
most accurate result. For lower values of k the estimator has a large variance where as higher values

have a large bias.

The AMSE can be written as the sum of the asymptotic variance (AVar) and the square of the

asymptotic bias (Bias) Suppos¢ Tt Then:

pr p g p Il ¢ p

ST p o p T g}

See forexample Beirlant et al. (200%)Estimations of in athletics are negative but close to zero as
presumed, around.1 or-0.2, see Einmahl and Magnus (2088Jhe ABias &pends on the second
order paraetre” whetheritis’ [ € i " [ but normallyit impossible to tell Luckily therefore

since” Ttwe use the expression for ABias in case| :
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SeeBeirlant et al. (20043 ABias depends on two variables, thand the functiomo Estimating

AVar and the ABias we can generate an estimate for the AMSE. Plpt@agaginst k, to find the
estimator , which is needed for both AVar and ABias as wslldBias needing c(n/k) as wellhe

graph will produce a sketch, the volatile points will be whetsesmall and for larger valgef k it

shows a bias and the graph moves upwards or downwards. Taking an average over the first stable
region as an initiaéstimator of , and call this valu¢ . Rather than taking one single value of

[, to make it less sensitive take a range of values.

In Beirlant, Dierckx and Guillou (200%) the following modetliagnostic for the threshold selection

is derived under certain conditiqris 1T :

5¢

Where

Bt rEm T T ‘AR <a>8 Y

T

The—represents in case” . @ - can be estimated by ordinasym of squareom:

Transforming into:
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4.5.5 Acquired Results

Beforefinding the end point estimation, the data has to be tested to determine whether it satisfies the
extremevalue conditior( f(x) is continuous on a closed interval [a,b], then f(x) has both a maximum

and minimum value on [a,b].Then from the previous sion, [ will be determined for both events.

For both events the extreme value condition is not rejected for almost all values of k, the lower values
do not satisfy this. The graphs represent mends
condtion.

]
(=]
)
(=]

|
o
o
o
o

|

Test statistic
o
)
|

Test statistic
=
b=
1

0.00 I 0.00—+ :

T T T T T T T
0 200 400 600 0 100 200 300 400
k k

Fig 4.1 shows the extreme value condition (Dietrich et al, 2002)

So as you can from theaphs the majority of test statistic (the solid line, both as a function of k)
passes the 95% quantile (thestied line) apart from a few higbsults buttik d oes ndét af f ect

of results, thus the analysis can continue.

a -
Fig(4.2) shows the moment estimator against -0.1-

for (a) men's and (b) women's 100 metres, the_ 7]

dashed line being the final ~037

-0.54

I I | I ] | I |
0 100 200 300 400 500 600 700
The graph to the right shosversus k. As

previously stated in athletics all estimates are p -

negative. Like before to make the test less -0.14

sensitive weol | t ake o d wor k
-0.3-

out the average and use this. The extreme va

condition has to be satisfied when choosinga _g5-

| | | |
regionk . The first stabl 100 200 300 400 )
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metres(a) is from 50 to 80 and the second which is less volatile but more bias is 110 to 200. The first
region gives0.25 and the secon@.17, therefore we I¢t range from0.25 to-0.17.

Thesameprocedr e i s done with [t hfieemW.28me0n8is praguced. a r ange
Consider the range df values for , so ¢hi w O @hi p p.

Now estimating the AMSE is possible, plotting AMSE against k for each valfie ofn the
previously specified range.

Average AMSE ©
=]
(s3]
1

0.0—|!!! :| : | o.o—l :| : : :
0 200 400 600 0 100 200 300 400
k k
Fig 4.3 shows the average estimated AMSE of the moment estimator for men and women, previously

found from AVar and ABias.

The dotted lines show the selected regions, they are selected by trying to keep k relaiaieynd
being independent of thie initial estimates. Considering the average AMSE:

=

v =

v

The dotted lines are on the men (a) from 45 to ©3,tth 175 and for the women (b&étweerB0 and
250. Averagig out these regions produces a table below.

Event

100-m men -0.25t0 -0.18 -0.19

100-m women -0.28t0 -0.18 -0.18
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4.5.6 MaximumEstimation Point

To estimateplug inf in to the formulais hgiven in equation 5. The equation produced only depends

on the k in the functiod ~ Q 0 "), and® ¢ . The graphs produced foren and women are

below:
a 354
= _
a
5 37.8-
=
= _
37.24 | : |
0 200 400 600
k
b
35.2
E
<3 ;
T 34.8
L
34.4 | | | :
100 200 300 400
K

Fig 4.4 shows the estimated endpoint of the speedwitked for both (a) men's and (b) women's.
The dashed line shows the final choice of the endpoint.

The plots look fairly stable and give a good indication of the ultimate world records. Adaid the
values from the graphs we take the first stable region, still making sure the extreme value condition
must be satisfied. Keeping in the 95% confidence intervals by using eq(@tiba k region are from
110200 and 8210 for men and women. Thlashed dotted line shows the final choice of endpoint.

From the average of these results we work out the ultimate end point speed, converting these into 100
metretimes, producing the table of results below:
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Current WR Endpoint Confidence limit
Table Endpoint (time)
(time) (speed km/h) (time)
100- m Men 9.58 37.85 9.51 9.21
100 ¢ mWomen 10.49 34.85 10.33 9.88

The last column represents the 95% confidence limit. According to the results the men still have a
0.7% improvement to achieve and the women have a larger 1.5%. The confidence limit of 95% gives

a |l ower ultimate predicti.on% daencd etahsei ncgu rtrheen tc uw orne
26

4.5.7 Comparing Results

The 100metresfavoured the exponential function, with the most accurate fit. Our predicted time was
9.48 seconds in the near fut{&® years time)andt h e ¢ e of the extremd value theorem is

9.51 seconds which are very similar. As mentioned before the extreme value takes into account
present knowledge and technology, so this seems reasonable. The 95% confidence limit of the end
point is 9.21secondsthis is the value most extreme in the confidence interval which could be
achieved Thisis much higher than our ultimate record of 9.03 seconds produced by the exalonenti
function, this could be due to opresent knowledge or due to the fact the extreme valuectinemnly

took data up to 200&nd did not include the last two records by Usain.Btdtd this been taken in to
account the end point and the confidence limit would certainly have dropped and possibly achieved a
similar result. Theheorem back upthe exponential fit very well for the near future prediction. To
continue this study | would have continued the extreme value theorem for theefif@@but bought it

up to date, as well as producing it for the 15@€tresand the marathon.
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Chapter 5 How Age Effects Physiology

5.1 Brief

Age is a big factor on physiology of a human being, in this chapter | will be looking at the three
physiological factors linked to running, maximum aerobic power, anaerobic power and endurance.
These three physiologictdctors are all used in th#& ronnetand Thibaulimodel asvell as other
variables which will be stated later. Using fdéronnemodel in maple | hope to achieve a trend from
the multiple age groups, hopefully showing a visual representation of what happens to the three
physiological factors according to age.

5.2 Data

The data collected used in tRéronnemodel are the world records for each distance from 100

metresto the marathon, by each age group from 35 to 90 in gaps of 5 feavever there were

actually two age groups before 3beffirst aje range was from 180, butas most of the athletes
werenearer 20 years old; we have taken 20 as the first age limit. The second being 25 years old which
is actually stated as the world records, the average age of this group was 25 and they are all aged from
20-35 when the records were st

5.3 PéronndProgram Explanations

The programme is based on éronneand Thibaults model equation for power outgut) (over

time (T) shown here as equation (5.1).

" ~ Y
5001 HIOBB oM @O 06 ED = p 0 ,,EY BOYSEp QT QO

L
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The model takes in to consideration ratios of aerobic power when calculating Sstr@d in
equation 5.2 and 5.3 belowr instance if the race is over 420 seconds (3000m) the equation uses
natural logarithm of the event duiai to reduce the peak aerolpower Péronnet and Thibault

(1989, p.453)¥’ This is shown below

0 o ,
SV oY "QWQY "Y T QITt o0&
op T[& O-IO-IT QY Y
" ~UOU0LTT-'Y QY Y T QiTt .
O 380 60Y O b0 0N Y v

Y

The K1 is the time constant for the kinetics of aerobic metabolism at the beginning of
exercise (30 seconds in), and K2 is the time constant for the kinetics of anaerobic metabolism at the
beginning of exercise (20 seconds in). The maximal aerobic power is equivalenio theo gihe
endurance is related to the lactate threshold, and BMR stands for base metabd@lidatepero
(1984) cited by Péronnet and Thibault (1989, p.456)dcthe average power outplt, required to

run a particular velocity can be calculated fritma equation produced below:

0 W ©L O ug 30

Coefficientwis the function for the body surface area found by height and weight, this negotiates the
wind resistance. Obviously the extreme acceleration in shorter events has an inipact an

correction is put in place. The b coefficient is the running ecoraordythe c is the base metabolic

rate. Equating equation (5.1) with (5.4) and then solve the equation for v will give an average running
velocity for certainparametersA simple equation of distance divided by velocity will give you the
running time.

Theprogramme in maple computes this process selecting thepdwametersIAP, A and E that
achieve the closest estimated time to the real marathon time, thus having the smallest error. Once this

has been computed for each age group using every distaraehinne can compare the results.
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5.4 Physiology Results

I will now look at the results produced from the programme for each of thephrametersthey
have been plotted in graphs to show a trend with age comparison.

5.41 Maximum Aerobic PowefMAP)

Maximum aerobic power is the highest rate of oxygen consumpisorally measured duringna
increasing intensity exercise. The exercise intensity incse@égtethe oxygen consumptidnitially,
however there comes a point where the oxygen consumiptie to increase buhe intensity still
rises. This graph is produced fratme MAP of different age groups:

Maximum Aerobic Power (Fig 5.1)
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y = -7E-05x3 + 0.0054x2 - 0.6048x + 98.465
R?=0.9813

Fig (5.1) shows how maximum aerobic power changes with age.

The graph shows a rise from age 20 to 25, wherveaks then fallgradually to 80The peak at age
25 comes as expected,thsse results are the world recotdshecurrent date, thus producing the
best MAP. The surprising factor is how tinend slowly decays with age rather than increasingly
decays with it.

After theage 80 the last two values seem to drop a lot more dramatically, this was expected. From the
age 75 to 95, MAP drops by 36.8% and from 90 to 95 on its own drops by a large 21.7%.The
percentage drop fromge 75 to 95 is larger than from the age 20 up toy7® staggering 4%. The
bodyisoneohat ur eds most andbeimgimorgathesphysiologyaohtheaodygis a

knock on effect, thusve are notible to push the body to greater limasageing takes effecthe

average life expectancy a luman being is around 79ears old, so people pushing their bodies to do
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marathons past this ageainincredible feet on its own, but physiology limits come in to effect, hence

the dramatic drop. The leasquare fit shows very accurate fit of 0.9939 @hing the description of

the trend given above ingbodvisual representatiofhe average percentage drop of maximum
aerobic power per decade from the age 25 to 80
decay.®

5.42 Anaerobic Power (A)

This power is generated not from oxygen but from the energy stored in our musclesdahedine
Triphosphaté ATP) which can be released causing a sudden burst of energy. The graph below shows
the anaerobic power produced by each age group:

Anaerobic Power (Fig 5.2)
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y =0.0041x3 - 0.8084x2 + 35.266x + 1102.2
R?2=0.9571
Fig (5.2) shows the change in Anaerobic Power with age.
The trend of this graph isndédt as smooth as the

results, especially at age 70. This point is a lot larger than expected but looking back APthe M
results Fig (5.1) we can also see at age 70 has a lower than expected hisssdems to suggest that
in the age groumcluding 70, they hava lot bettershorter distance runnetbhan longedistancethus

producing a higher Anaerobic power andstly smaller maximum aerobic power.

From age 20 to 40 the anaerobic power seems fairly constant, showing no major decay. This level of
anaerobic power being maintained over a period of 20 years shows that the anaerobic capacity is not
effected till past the age of 40, where it steadily decmilarly to the MAP.Theaverage percentage
decay of the anaerobic power each decade from 40 to 80 is 5.8%, wiech &milar to the MAP

decay
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beginning 2/3 of the results. This supports my findings when looking forward to my redeits in

(5.4), the errors are particularly high from the 75 to 90 age bracket, thus n@ytreducing the

most accurate answers,ea though the results producedrevéothelowest error | could maintain

using the program in maple.

5.43 Endurance (E)

Endurance is the aliiy to maintain theaerobic threshold at a constant rate for a long period of time

The endurance factor is key flong distance running likdhe marathon, endurancedlosely linked

to efficiency, maintaining running pace while using a minimal uptake of oxydesfactor will help

vastly with endurance, below shows the age ranges with their endurance factor:

100

Endurance (Fig 5.3)
Age
0 T T )
(l) 20 40 80
-1
-2
-3
@ L 2
5 R L G—
g s
5 * o
. '\// “\

R?=0.678

y =-1E-07x° + 3E-05x* - 0.0029x3 + 0.1426x2 - 3.1649x + 19.175

Fig (5.3) shows the change in endurance with age.

This is unlike the praeus two graphs that hawecayed steadily witage;the presumption is that

the graph would have been similar. The graph is not correlated as well as the previous two but a trend

can ke made out of the results. It looks like endurance peaks at the agd®shOwing a slight

decay till the age 80

w h e r elikeiamaerabic anpl gaerolaicgpgwere s s i v e |

the trend line increases dramatically from the age 20 tthi#0is because it has been shown that

endurance is a factor which can be progressively worked on to increase its efficiency, taking years to

reach its optimum.
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There are so mansariables included in endurance, it could be said that both aerobic asblbic

power both are included. The model bel@ab) produced byHirofumi Tanakaand Douglas R. Seals
shows how age affects endurance through several factors, also including MAP knidirafumi

Tanakaand Douglas R. SealéEndurance exercise perfoance in Masters athleté2008) pp 5563)

paper they came to a similar conclusion, that endurance gradually decreases through middle age then
rapidly decreaseduring older age. They don't seem to comment on the younger ages.

| Aging |

v

| Training intensity [ "=,
& volume

2 1 Maximal } Maximal + Maximal
(55f heart rate stroke valume a-v 0, differance
l / \
— Exercise | Maximal nwgen - +*Lactata
aconomy consumption threshold

N

[ | Endurance exarcise performan

(5.5) showing the physiological and training elements which effect endurance

A similar study was completday Dieter Leyk a researcher at the Institute for Physiology and
Anatomy in Germany'For these runners, significant aggdated losses in enduranperformance did
not occur before the age of 50. Mean marathon anehtaifthon times were nearly identical for the
age groups from 20 to 49 yeafdTheseresults reportmy own, by showingndurance doesn't decay
significantlyup to the age of 50, and might even imgrdrom young ages like 20, witthanging
factors like intensitynd volumeof training.

Again the older age results are not in as good correlation, struggling to fit the trepibtineedthis

might be due tohe errors being larger.
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5.44 Errors

The errors of each age will signify the fit of the model, shows to what accuracy the model in maple
works. The smaller the error the better the fit and the closer the estimated marathon will be to the real
one of that certain age. Large errors may occertdinnorconsistent running times in the age range.

Errors (Fig 5.4)

4
_.35 /
(%)
s 3
2 * /
'i 2.5 /‘
5 2 V4
0 1.5
El *
k3] *
< 05 W/

0 T T T T 1

0 20 40 60 80 100
Age
y = 2E-05x3 - 0.0017x% + 0.0361x + 0.5029
R%?=0.9244

Fig (5.4)shows the total absolute error for each age group.

All the errors are below 1.5 from age 20 to @B therthere is a severe increaseerrors. Age 80

group hits a 2.8% whichis still not dramatically large and falls below 5%, the largest error being
3.59% from the 90 age group, but yet again below the 5% barrier. The errors show that the older the
age group the larger the error especially with the older ages. This caldd/beothe varying quality

of timesproducedn the older ages as there is only a limited number of older athletes running at each

distance.
5.5 Conclusion

Péronnetaind Thibaultsnodel applied to the Masters Athletics records has produced conclusive
results for the maximum aerobic power, anaerobic power and endurance, which all have satisfactory
trends. he accuracy of the parameteiguate to the closest estinthtiene, thus prodcing the

smallest error possible is the most important part of the process.

Starting with the MAP graph, it is extremely linear meaning that exceptional performances in both
short and long distances produce a similar MAP variable. The model peaksagesh2s30,

revealing that the aerobic system is not at its full potential till around figese this could be partly
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due to the athletes havimgdseveral years of training their aerobic system to maximise their oxygen
consumption at higher intensiti€bhis peak i®acked up bymany of the athletesho hadbroken the
world record for the marathon, and the current world record hBlgeick Makau Musyokivho was

26 years old when setting this bench mark.

Theanaerobic power system plays only a vanall part in long distance running, due to its main
phasebeing a release of explosive ATP in the muscles for abeisdcondsfor example gettingut

of the starting blocks, or the final sprint before the finish. In fact in a study by Fallowafidld

Wilkinson, there results showed that anaerobic power does not play a key physiological factor in
distances over 10 kilometr&sSo this suggests the graph only represents mainly distances from 100
metres up to the mile. The graph maintains a stalalerahic system from the age 20 to 40, but the
peak is still a0 to 25 years old hitting a 1545J/Kg, again backing up the current world record
holders. These results reflect the current world record holders from 100 meters to a mile, all being
younger tha the long distance runners having an average age of 26. A big part of the anaerobic power
is the fast twitch muscle fibres to use the ATP explosively; this is the reason for the decay in
anaerobic poweas age increases from 40 years old. The anaerolvermbops by nearly half from
1506J/Kg to 805J/Kg, from the age 40 to 80, showing the severe effects of physiology over these 40
years. Many studies have cometh@ same conclusiothat anaerobic power decays quicker than the

aerobic system, and is a higher in the adolescent to middle age categdries.

Péronnetand Thibault believed that the factor endurance majgrly focused on running events 3000

meters or greater and like the diagram (5.5) suggested that MAP and endurance are related. The

endurace factor is not as well known as the previous two factoP&asnnetind Thibault (1989)

stat e, AThe physiol ogical b ausni dse rosft oeofftifibe r(apn. ¢ e4 5c9a)p

diagram (5.5) trieso categorise endurance into several physiological factors.

The inconclusiveness of the factor of endurance makes it harder to draw a definite conclusion to what
the effects of age has on it. One thing that does stand out isetaatabrobic power tuilt for

shorter distances up to the mitghere as the endurance kicks in for events 3000 meter&oridwe
interesting thing is thatherethe anaerobic power plateaus from age 20 ta/ldén it starts
decreasingthe endurance gradually increasggosirg this decrease. This coubeé due to the fact
MAP is dso high as well as the aerobic poyereaning the athlete would have a high V. and
thereforevoul dndét n e e d resewvesifoednduraree thimuld explgirythe fairly low
values for younger ages. The endurance stabilises arduatithe age of 40 and maintains till around
age 75dropping a little along the way. This could bkdihto the decrease in MAP and aerobic
power, this decrease will make the athletes rely more om émelurance thus it becoming greater. It
maintainsfrom majorly decayingthis could be due to the fact athletes are becoming dependant on

their endurance as thétAP and aerobic poweare beyond improvement now. Focusing training on
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their endurance, atttles can significantly improve it, thus producing a delayed decrease in endurance
on the graph (5.3 his could also be said for the little rise at the age 90 on the endurance graph due
to the dramatic decrease in MAP.

The errors have been made as siglpossible using the prograbut the older ages from 75 up have
higher errors, thus putting uncertainty onstieesults, this could be tha&ck on effect making the
latter fit worse As shown in table #h the appendixThe older ages having a larger error could be due
to other effectssuch as a greater variations in the state of health in the elderly which limits the
number of athletes in these age groups.

There a many things that could be improved using this proggrathieve more accurate results. The
first thing in the program is that the Bidlody massand BSA (body surface area) hdbeen set ta
constanbf Haile Gebrselassies bodyeasuremats. This would not be the caagspiinters can

weigh up to doubléis body weight. Tdeep the pragam simple but make it more realistic we could
take an average obodyweights and body surface area of all the distance runners. The main aspect
that could be changed with more time would be splitting the distances up,aaménebic capacity

focused more on the 100 metres to the miteereasthe endurance the longer distances.

Changing these factorsowld need further researblut would most certaip improve the results.

Many studies have supportety results up to a certain degree,l seould expect the extended results
would tobe similar, he biggest change beiegdurancéactor. The main focus on improving the
results would be to get a better correlated trend of the running endurance, showirg sybetirony
with MAP. There are still so many variables in physiology which will incorporate in these three
parameters, to come up with a perfect moBétonnetand Thiabault produced a satisfying model but
as Blestsaidfiit is difficult to envisage anynodel which could incorporate manifold influences which

would describe the complexity of even the physiological aspects involed
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Final Conclusion

Reflecting back on the abstract and introductlomanted to review running limits for human
performanceaising mathematical forecasting. | am extremely happy with what | have achieved,
comparing my own work with similar studies to a®moe a conclusion. Reviewiranline and redvant

l iterat ur e,astudytwhach emgates niaydrends through thiddwecords, although
doing so | did manag® come to similar functions and predictions as many publications which have

been spoken about previously.

For each of the thredistanced have arrived aa final prediction for the ultimate world record adiwe

as a 50 year predictiofihe present day predictions helped on the 1500 metres and the marathon but
wasnodét helpful with the 100 metres because of Us
which is said to be way ahead of its time. My finaldicgons are below with the functions used to

produce the times:

) ) Present Day Prediction 50 Years Ultimate World
Distance Function Used ) o
(2012 Olympics) Prediction Record
100 Metres Exponential 9.707 seconds 9.48 seconds 9.03 seconds
9.51seconds
100 Metres Extreme Value - _ 9.21seconds
( End point)
1500 Metres Logistic 3:24.19 3:16.35 3:12.00
The Marathon Logistic 2:03:27 1:55:06 1:51:18

(Table 5) shows the final predictions produced from the functions in each chapter

The third columrshowsthe most accurate predict®for the 2012 Olympics. #\you can see the 100

metres present day predictiandbove the actual world recortistis due tdolt's recordbeing such

an outlier and is before its time. The 100 mefpesdictionsook corsistent consideringhe first row

in the table has theurrentworld record includedvh er e as t he extr enes val ue ¢
is most likely reason for the lower ultingalimit. | am happy and confident withe results | produced

andl eagerly await taee how close the Olympic times will actually be to my predictions.

Showing the effects and limitations age has on three physiology factors, maximum aerobjc power

anaerobic power and enduranddyave successfully produced three gaphowing multiple trends,
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both singularly and with each othdihere was a very linear relationship between age and MAP,
decaying on average 8.3% for every decade passing from age 25 to the age 85. The anaerobic power
findings weresimilarto MAP but faied to dropuntil arourd the age 40, this trend linkeéry well

with the endurance graph. The anaerobic and endurance appear to have a relationshipmibareby

the anaerobic power started to decrease at thefalf the endurance was neargesak which

suggests that endurance takes time to maintain this high rate of activity. Thistlstibtligre is not

only a decaying relationship with increasing dmé a relationship between the physiological factors

as well.

Further study

I would have likedo carry on the study, looking in to reproducing the extreme value theorem for all
three of the three distances using my own up to date times for each event. Then compare and back up
the predictions that are in tablel3ound it hard to choose between usigponential and logistic

functions for the 1500 metres, which were also favourable functions for both the 100 metres and the
marathon. Ultimately | used the logistic for the longer distances (1500 metres and the marathon) and
exponential for the 100 metrakerefore | am curious as to whether this is the gantbe other

distances e.g. 200 metres, 10,000 metres. Also to see if the shorter distances favour the exponential
functions where the long distance the logistic, the 1500 meters (middle distaingehledurning

point .

The older age physiology results are the main cause for concern in dhapteuncorrelated results

are linked to the high errors in Fig 5.4. The reason for the large errors is because the times are less
consistent within thatage group. This is most likely an effect from timeited number of competitors

at the age group 7Fhere are going to be an extremely lower numbedadrindividuals running

marathons than middle age people, therefore not as many chances to beatifsatvgrid record.

For the stdy to run more smoothly weould have to wait for a longer period of tiratbowing for

more older athletes to compete for the masters world records and possibly providing a more even
spread.Another aspect that could be lam at is that at older ages the athletes age is most likely to be

at the | ower end of the age group sO using speci

results out producing a smoother trend.

The boundaries of these studége endless #re is always the potential to study in more depth for
example analysis age groups more accurately, apply the study to more distances, or at different

altitudes, however | am happy that | have been able to brush the surface of this topic.
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(Table 6) The Y I & (i vdNdRedords for each age group, the figures highlighted in yellow are for the records broken this year.

WR Age 95-
MEN 15-20 | (Yrs) WR 20 25 35 40 45 50 55 60 65 70 75 80 85 90 | 100 >100
100m 10.01 22.00 9.58 | 10.01 | 9.58 9.97 | 1029 | 10.72 | 1095 | 1144 | 11.70 | 11.99 | 12.77 | 1354 | 1435| 16.16 17.53 | 21.44 | 30.86
19.1
200m 19.81 23.00 19.19 | 19.81 9| 20.11 | 20.64 | 21.80 | 22.53 | 23.36 | 24.73 | 2520 | 2648 | 2797 | 30.89 | 3424 | 3857 | 48.69 | 77.59
43.1 158.6 | 221.0
400m 43.87 32.00 43.18 | 43.87 8| 45.68 | 47.81 | 50.20 | 51.39 [ 52.24 | 53.88 | 56.37 | 59.34 | 6534 | 70.64 | 80.47 | 95.04 4 0
102.6 102.6 | 101. | 103.3 | 110.3 | 114.1 | 118.6 | 123.7 | 130.4 | 134.3 583.1
800m 9 21.70 | 101.01 9 01 6 4 8 5 0 2 3| 140.52 | 154.30 | 168.95 | 198.85 | 244.85 2
210.2 210.2 | 206. | 2125 | 222.6 | 2285 | 2452 | 2525 | 267.6 | 279.8 777.7 | 1006.
1500m 4 23.80 | 206.00 4 00 1 5 3 0 0 5 7| 297.65 | 322.40 | 354.50 | 398.42 | 487.17 0 41
229.2 229.2 | 223. | 2324 | 2425 | 256.0 | 267.9 | 276.9 | 293.2 | 296.4 888.2
Mile 9 25.00 | 223.13 9 13 8 3 9 0 4 9 0 | 323.58 | 341.80 | 429.60 | 484.70 | 630.90 0
448.7 448.7 | 440. | 449.0 | 4825 | 507.7 | 521.2 | 537.2 | 569.4 | 587.4 1116.0 | 1577.
3000m 9 20.40 | 440.67 9 67 0 4 0 0 8 7 0 | 642.40 | 670.43 | 790.46 | 853.40 0 40
772.6 7726 | 757. | 7741 | 834.1 | 863.6 | 893.2 | 929.7 | 9725 | 998.8 | 1113.3 | 1147.0 | 1317.8 | 1491.7 | 1885.4 | 3010.
5000m 1 22.00 | 757.35 1 35 2 5 0 0 0 7 0 8 2 8 0 5 56
1601. 15775 | 1601. ( 157 | 1611. | 1710. | 1802. | 1855. [ 1911. | 2054. [ 2082. | 2284.1 | 2365.1 | 2669.2 | 3170.8 | 4167.5
10000m 75 23.20 3 75| 7.53 20 88 56 16 86 88 20 3 6 6 0 0
7575. 7439.0 | 7575.| 743 | 7439. | 7726. | 8056. | 8369. | 8756. | 9390. | 9717. | 10488. | 11044. | 12343. | 15895. | 20401.
Marathon 00 35.40 0 00 | 9.00 00 00 00 00 00 00 00 00 00 00 00 00
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Appendix 5.2
Age MAP A E Error Estimated Time Actual time
20 85.15 1545 -6 0.727 02:06:15 02:06:15
25 88.3 1511 -6.5 0.6266 02:03:58 02:03:59
35 84.7 1492 -5.3 0.4301 02:03:59 02:03:59
40 78.2 1506.5 -4.1 0.4962 02:08:47 02:08:46
45 73.4 1452 -3.5 0.4285 02:14:17 02:14:16
50 71.9 1315 -4.05 0.3363 02:19:30 02:19:29
55 69.5 1285 -4.4 0.6847 02:25:59 02:25:56
60 65.6 1191 4.7 0.562 02:36:26 02:36:30
65 65.1 1078 -5.4 0.8257 02:41:58 02:41:57
70 57.4 1170 -4 0.8526 02:54:48 02:54:48
75 57 806 5.1 1.238 03:04:07 03:04:04
80 50 850 4.4 2.833 03:25:44 03:25:43
85 46.1 710 -7.55 2.28 04:24:55 04:24:55
90 36 760 -6.7 3.59101 05:40:17 05:40:01

(Table 7) shows the MAP, A, E and error for each age group, the figures highlighted in red are out of correlation of the trend line and in blue

are the errors where they start to increase, showing a pattern with the uncorrelated endurance.
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Appendix 5.3
> restart;
Body Mass and Height for Gebrselassie
> BM:=56;
BM =56
> H:=1.65;
H:=1.65

> BSA:=0.20247*BM"0.425*H"0.725;
BSA4 :=1.610706658

Here overridden by standard Peronvedties to be used for agelated calculation BM (kg)
BSA(m"2)
> BM:=70;BSA:=1.8;

BM =70

BS4 =1.8

> time42195:= proc(MAP,A,EUec)

local

BMR, TMAP,T k1,k2,f E,B,Paer,S,Panr,PT,v,time42195 MAP1,i,time4
21950ld;

Derive the power using Peronnet equation 20
BMR:=1.2;

TMAP:=420;

k1:=30;

k2:=20;

f:= -0.233;

Convert MAP from ml/kg/min to W/kg
MAP1:=MAP*(20.9/60);

E:=EUec*MAP1/100;

Initial arbitary guess of 130 mins

T:=130*60;

time421950ld:=T/60;

time42195:=0;

Iterate to accuracy of 0.01 minute

for i from 1 to 100 while abs(time42195old - time42195)>0.01 do
time421950ld:=time42195;

B:=MAP1- BMR+(E*In(T/TMAP));
Paer:=(1/T)*int(BMR+B*(1 - exp( - t/k1)),t=0..T);
S:=A*(1+*In(T/TMAP));

Panr:=(S/T)*(1 -exp( - T/k2));

PT:=Paer+Panr,

Now solve Peronnetquation 21 using this power
v:=solve(PT=1.2+3.86*V+0.4*BSA/BM*V"3+2/42195*V"3);
v:=v[1];

T:=42195/v,

time42195:=T/60;

end do;

end proc;
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Here is an example of the search boundaries and step sizes to find
the best parameters for the smallest error.

Age-related determination of MAP, E and-A

> minerr:=100;minMAP:=1000;minA:=1;
for MAP from 85.15 to 85.15 by 2 do
for A from 1545 to 1545 by 200 do
for E from -6to -6byldo
t100:=(0+10.01/60);
t200:=(0+19.81/60);
t400:=(0+43.87/60);
t800:=(102.69/60);
t1500:=(210.24/60);
t1609:=(229.29/60);
t3000:=(448.79/60);
t5000:=(772.61/60);
t10000:=(1601.75/60);
t42195:=(7575/60);

d100:=t100 - timel00(MAP,A E);
d200:=t200 - time200(MAP,A E);
d400:=t400 - time400(MAP,AE);
d800:=t800 - time800(MAP,A E);
d1500:=t1500 -timel 500(MAP,AE);
d1609:=t1609 - timel609(MAP,A,E);
d3000:=t3000 - time3000(MAP,A,E);
d5000:=t5000 - time5000(MAP,A E);
d10000:=t10000 - timel0000(MAP,A E);
d42195:=t42195 - time42195(MAP,A E);

err:=abs(d100)+abs(d200)+abs(d400)+abs(d800)+abs(d1500)+abs(d1l
609)+abs(d3000)+
abs(d5000)+abs(d10000)+abs(d42195);

fit:=abs(d100)/t100+abs(d200)/t200+abs(d400)/t400+abs(d800)/t8
00+abs(d1500)/t1500+abs(d1609)/t1609+abs(d3000)/t3000+
abs(d5000)/t5000+abs(d10000)/t10000+abs(d42195)/t42195;

fit100:=fit*100/10;

print(Err_,err, MAP_,MAP,A ,AE_,E);
if err < minerr then

minerr:=err;

minMAP:=MAP;

minA:=A;

minE:=E;

end if;
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end do;

end do;

end do;

minerr;minMAP;minA;minE;fit100;

marathontime :=time42195(minMAP,minA,minE);
hours:=trunc(marathontime/60);
minutes:=trunc(marathontime) - hours*60;
seconds:=round(frac(marathontime)*60);

minerr =100
minMAP = 1000
min4d =1

Err , 0.7270894856, MAP , 85.15, A_, 1545, E , -¢

0.7270894856
85.15
1545
-6
1.903480581
marathontime = 126.2493530
hours =2
minutes := 6

seconds =15
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Final Year Project Plan Student: Callum $haw (478065
Date: 8/11/11 Supervisor: Mike McCabe

Provisional Project Title: Mathematical Modelling of Running Performance

Project Brief:

What times can we expect athletes to run at the London 2012 Olympics? This falls in to the main
qguestion | will be answering, whether statistical forecasting can be used to predict reliable results
for running times of the future. World records are broken and set year after year with no signs of
stopping as yet. Focusing on the word 'yet', will there come a time where the world record running
time for that particular distance will not be able to be broken. The purpose of this project is to see if
the human body has limits and if we can for see these results using mathematical modelling. | will
be collecting data from online resources, processing this data through analytical forecasting and
then modelling. The Project includes mathematical forecasting to predict a 2 hour marathon as well
as other studies, such as work related to the mathematics of running speed and the effects of age on
running performance. | will be incorporating and analysing some of the data used in these published
pieces where necessary as this adds to the diversity of the project at hand. This diversity will
hopefully in lighten us on what is the optimum age for achieving the world records as well as what is
the limit for each age range. | hope to come to a conclusion with a prediction using my own model
and parameters as well as stating how reliable and accurate the predictor is.

Plan: (Less work put in the 1st Semester as weighted Modules 70/50)

11th November - Hand in Plan (Background Reading and Resource finding)
30th November - Structure of Introduction (Getting to grips with LATEX)
16th December - Introduction Complete

9th January - First chapter Drafted (In depth Research 2 hour Marathon)
20th January - First Chapter Completed

4th February - Second Chapter Draft

10th February - Second Chapter Completed

20th February - Third and Fourth Chapter Draft

1st March - Third and Fourth Chapter Completed

10th March - Chapter 5 Completed

18th March Conclusion Completed and Bibliography

Last week to fix any problems before deadline.
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Background reading and Resources:

Published Work by the IAAF( International Association of athletics federation)

Modelling the Development of World Records in Running, (Gerard H. Kuper, ElImer Sterken) 2006
Distance Running Performance and the 2-Hour Marathon: When, How and Who? (M.McCabe)
Records in Athletics Through Extreme-Value Theorem (John H.J. Einmahl and Jan R. Magnus)
PubMed, U.S. National Library of Medicine, National Institutes of Health

Springerlink.com Mathematical Modelling

Mathematics and Sport (L.E. Sadovski and A.L. Sadovski)

Mathematics and science for exercise and sport the basics (Craig A. Williams, David V.B. James)

Project Report Outline:

Abstract
I  What times can we expect athletes to run at the London 2012 Olympics and future
Olympics?
Will there will be a limit to running performance? If so when?
Areas of agreement and disagreement Previously
Women improving more than men? What Does this hold for future?
Previous methods of analysing
Struggle to pin down an accurate prediction
Possibility of further Study

= =4 =4 4 -4

Introduction

The Boundaries of Human Performance

World Record Representation using statistical modelling

What Programs will use

What modelling used ( Linear, Polynomial, Piece wise, Gompertz)
How does age affect Running times? Dramatically?

Using physiology (VO2 Makx, efficiency, lactic)

Comparing Physiology to running time and Age

What each chapter will contain

= =4 4 -4 -4 -8 A - -9

What | hope to achieve by end of Project
Chapter 1 - Forecasting a 2 hour Marathon

Introduction to Chapter

Using linear trends (World Records and Averages of each year)

Analysis Data Pros and cons

Polynomial trends (World Records and Averages of each year)

Analysis Data Pros and cons

Gompertz Model Explanation (show fitting parameters)

Analysis of Gompertz showing pros and cons

? Using previous years predictions, work out the error to predict new results?

=A =4 =4 4 -4 8 -8 - -9

Conclusion of 2 hour Marathon Records
Chapter 2 - forecasting 100m world record

Y Introduction to 100m
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= =4 4 A -4 -4 -8 - -2

Using Linear Models of World Records
Analysis of linear World Records

Using Polynomial Models of World Records
Analysis of Polynomial World Records
Comparisons of Linear and Polynomial
Gompertz Fit using Parameters

Analysis of Gompertz (Prediction?)

? Using Previous Predictions?

Conclusion of 100m

Chapter 3 - Physiology and human limits

=4 =4 4 4 -4 -4 -4 - -1

Introduction and overview of current ideas about human performance
VO2 Max and Anaerobic Metabolism

Blood Lactate Factors

Joyner's Model (Sustainability VO2 Max, Lactate Threshold)
Introducing Limiting Factors (efficiency and Economy)

Peronnets Model

Analysis of Models

Power output comparisons using Joyners and Peronnets Model
Conclusion on physiology and human limits

Chapter 4 - Age effects to Physiology and running times

= =4 =4 4 -4 A -8 -

Introduction and overview of age with athletics and known performance
Age Trends against Physiology ( Linear, Polynomial, Piecewise)
Maximum aerobic power output compared with age

Anaerobic Capacity compared with age

Endurance Capability Compared with age

Age Physiology Comparisons to Running times

Analysis of data

Conclusion

Chapter 5 - My VO2 and Other Questions Unanswered

Final Conclusion

= =4 =4 4 -4 A -4

= =4 =4

My VO2 data collection
Analysis of my results
Factors that influence times
Errors that factors cause

An ideal running situation
Final predictions table

2012 Olympics

Go over Introduction

Explain each chapters findings and results
Predictions explained and how accurate explanation
What | have learnt from Project
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