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Abstract

Arewe able to predict the flight path of a launched projectile? To a certain extent, yes we are able to
but there are so many variables and factors to consider in dynamic motion, it is never possible to be
absolutely one hundred percent sure of a projectilegectory, and flight path.
This project aims to explain sport projectile motion d@hd effectsof drag, lift, spin, bounce
wind, hason a tennis ball and how the top tennis players are able to exert spin to coifiéeent
angles and make their windowf acceptance larger. Furthermore the fundamental basics of
projectile motion will be analysed with worked examples using equations formed in the chapters.
Imagine hitting a tennis ball, the motion of the ball will depend on multiply factors. These
are theheight in which the ball was hit, the impact velocity of the racket thus the power the ball is
hit with, the velocity of the ball, the weight and diameters of the ball, the surface of theitbsgiin
was applied, drag, lift, cross, head and tail wird initial angle the ball is hit &nd so on. One can
see with all these variables, it becomes clear predicting motion of a projectile is not easy; however
this project will attempt to do so in the simplest of cases.
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Let us begin.

Introduction

Spinning balls were first studied by Sir Isaac Newton in tffecgiitury and he noted how a curved
flight of a tennis ball was exaggerated by sfhieRoy W. Alaways, 2001)

Yy $KSY L NBYSYOGSNBR (KIFIG L KFER 2F0Sy asSSy
describe such a curve line. For, a circular as well as a progressive motion being communicated to it
by the stoke, its parts on that side, where motion conspire, must press and beat the contiguous air
more violently than on the other, and there excite a reluctancy and reaction of the air proportionally
ANBFGSNDPOPDPQ

Sir Isaac Newton(1642727)(Croft, 1988)

| 26 SOSNI AG st a y2i dzyGAft [2NR wlkeft SAIK LIzt AaKSH
1877 (Rayleigh, 1868)ere it was the first rigorous analysis of spin forces and was the fifstmpto
AYUiUNRRdzZOS W¢KS al3dydza 9FFSOGQT a GKS ONBFGAZ2Y z
into the areas of spinning balls and most recently Colin White has investigated in sports projectiles
and has published his book titled Projectilgnamics in Sport in 2011. This book has helped this
project flourish and most of the inspiration for this project has come from this book.

The objective of this project is to find out whether or not exerting spin onto a tennisvilall
give players an adntage and how the top players can create all sorts of angles and shots because
of top, back and side spiConsequently how Roger Federer has dominated the game, between
2004 to 2010.
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Symbols used

Crosssectional area

Acceleration

Drag coefficient

Lift coefficient

Coefficient of restitution (CoR)

Force

Drag force

Lift force

Universal gravitational constant

Acceleration due to gravity

Altitude (above Earth)

Height

Moment of Inertia

Kinetic energy

Angular momentum, characteristic length

Length

Mass

Force acting normal to surface

Power, potential energy

Momentum

Distance from axis of rotation to centre of percussion
Range of flight

Distance between two bodies

> Position vector

i Displacement

Y Maximum distance

Y Torque, total time of flight

0 Time

o] Old velocity
V) Velocity
0 Velocity of fluid
0

W

<o s 53g3g g0 90 E: o

—_—

Launch velocity
Work
o Wind factor
w Displacement
| Angular acceleration
— Angle
— Launch angle
— Optimum angle
QhQ Tait coefficient
: Absolute dynamic fluid velocity
‘ Coefficient of kinetic friction
‘ Coefficient of static friction

: Fluid density

r Angle of slope
1 Angular velocity

¥ Kinematic fluid viscosity byj ”
, Wind speed
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" Wind coefficient (force

Chapter 1 z History of projectiles

Before we start to explore the effects of spin has on the flight path of a tennis ball, we shall delve
back into the past and a take journey to see who were responsible for projectile motion, and look
into its foundation and its creation.

A projectile inthe dictionary is definedsa body that is projected by an external force and
continuing in motion by its own inertiAnon., 2011) That being said, the science and the study of
the motion of bodies has been linked to the very beginning of the UnivérgeS &2 OF f f SR WQ0
Cosmologists believe the universe exploded outwards form a singularity with infinite density and
temperature at a finite time in the pagWikipedia, 2010)The projectiles of the matter that were
sent out during the big bangra why our universe looks and the way it is. After severalillon
years later those sent matter eventually made galaxies, then solar systems with planets orbiting
around a sun were created, just like our solar system. Since this project will focusjectifes only
on this planet, the Earth, which has a gravitational forceasdundoc®) @i "Q o (i
o @ Qoi . However if this project was being done on another planet, for example say Jupiter,
where on the surface the gravity is around 25% (G KF G 2F GKS "9vobldikQa s (K
around¢ i (Coffey, 2008)Therefore projectiles will behave differently on other planets as the
amount of gravitational force exerted upon it will ultimately be different.

It is evident that motionof objects has fascinated the minds of men from the earliest of
times, whether it be celestial or terrestrial, mankind has watched, studied, explained, attempted to
its prediction and been in awe of it. Centuries before the birth Jesus early ancientdbgypiould
study the motion if the Sun, Moon and stars out of awe and amazement. Consequently they
determined patters by these heavenly bodies and over a period of many years realised certain
terrestrial occurrences, such as floods and seasons that cothoidth the events in the sky.
Therefore the Egyptians learned to watch the sky very carefully to predict the future occurrences
and thus the early calendar was creat@foft, 1988)

The earliest example of a sports projectile on Earth would probablwibe our distant
ancestors, the cave dwellers, who would have thrown stones in battle to gain dominance or for the
hunting of animals. In due time they would have realised what type of trajectory or flight path their
propelled objects were taking once iadl left their hands. They would have grasped the idea of the
harder the object is thrown, the further it might go. Therefore from practise and refining their skills,
they would have attained incredibly accurate and powerful shots, in the way the sameoutly S
American rainforest tribes use a blow gun in such deadly precision, killing their pray with poison on
the end of the fired projectiléWikipedia, 2010)

As time progressed the technology and weaponry evolved along with it. Innovative lever
type device came into operatin with a range of mechanical catapult and slingshot like actions. The
earliest built catapults could launch around 20kg of stone maybe up to 40m. (not very efficient in a
war). Consequently not long after the trebuchet came to fruitionthe second half of the 13
century, a highly advanced slingshot type machine designed primarily to destroy fortification. This
monster device could propel stones of 120kg a distance of up to nearly 200m, and was also very
accurate due to its counterbaly OA y3 G 2NJjdzS | OlA2y > 6KAOK SyadzaNBR
enormous forces created through its firing actigihite, 2011) Theballistics for these devicaesere
fairly simple, thelarger the device, the longer was its arm, the wider the arcedthout and
therefore the greater the range it could achieve.
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While projectiles were being launched all over the wdHd great minds of the time were
trying to explain its mechanics and determine its motion. One particular person who studied in these
fields was a man named Aristotle (384 8822 BC), a Greek philosopher and polymath. He argued
that rest is the natural state of a body, so that any movement must be accompanied by some force
that continues to act whilst the body remains in motion. Tluscé would be proportional to the
velocity. When a stone is dropped, the force in question is the weight of the stone and heavier
stones will fall faster than lighter one@\ot true!) Aristotle knew however that when an object is
dropped it will acceler@ and thereforeit gainsvelocity. Since weight is constant, some other force
must be must be present for the increage velocity. Realising this, others had argued that a body
moved morejubilai £ & & Ad | LIOMR F OK S R I Niwdfirediom isPowathe |y | N
initial force of propulsion is provided by the tension in the bow, but thereafter a rush dietind
carries it to its targe{Croft, 1988) This was the earliest recorded analysis of ballistic motion, known
4 QL Y LIS (atwh wag ded/dNidrR Aristotelian dynamics. Its main hypothesis stated an
object fired from a cannon for example, folleva straight line path untilithagt 2 a4 A da A YLIS
which point it fell suddenly towards the earth (similar to the flight pathadback spun driven golf
ball). The theory stated thatt £ £ Y2GA 2y |3 Ayad NBaradlkyOS NBIjc
continuous motive force Obviously with the case of launched projectiles such a mover is not
present, and so Aristotle postulated an ethative auxiliary theory which states: a mover was
provided by the launcher itself. It was then transformed into a projectile at the point of launch ready
G2 2LISNIGS 2y0S AlG gra Ay FiEAIKGO A0 € 02 0GKA
movement is not related by the medium through which it moy@ghite, 2011) These misguided
LINAYOALX Sa GKIFG | o02ReéeQa yladzaNI €t adrdsS Aa G2 0
motion that directed thinking in this field for many centurigscome.

Figurel.1- Shows Plato (left) and his student Aristotle
(right) in the school of Athens, a fresco by Raphael.
Aristotle is seen gesturing towards the earth, detailing
his belief in knowledge through empirical observations
and experience whiléolding a copy of his Nicomachean
Ethics in his left handwhile Plato gestures upwards to
the heavens representing his belief in The Forms.
(Wikipedia, Aristotle, 2005)
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Various modifications to the Aristotelian Impulse Theory were put forward omany
centuriesin an attempt to bring together the mathematical analysis in line with observations. Finally
in 1638 GaliledGalilei (18 febuary 1564c 8 January 1642) an ltalian physicist, mathematician,
astronomer, and philosopher, who is also caedi KS ¥ I (i K S NJ 2 @dublishedmiS paifer { OA Sy
YEYSR W5ALf23dz2Sa 2F GKS ¢92 bSg {OASyOSaqQsr s KSN
Galileo had more insight than Aristotle, where Aristotle focused on the origins, causes and the
effects of pojectile motion, Galileo favoured more on measurable quantities such as time, weight
and acceleratiorand did not concern to why a stone fal(Salileo realised that if a force is applied to
a body it will gain or lose velocity.e. it will accelerate ordecelerate. Coversely, if a body
accelerates, some force must be present to produce this acceleration. An object falling towards
Earth accelerates, therefore it must be acted upon by some force, and in this case the force is
gravity. He uncovered inthedad Sy OS 2F | ANJ NBaAraidlyoOoSs ff 206280
have the same constant acceleration i.e. the bodies gain velocity at the same rate, which he
calculated to belx i  each second, after two secongsé@d i  and so onGalileo @clared that
the speed.v (velocity) of the body was proportional to the time elapsed tlu@cceleration) was
calculated to befx i (Croft, 1988).

Imagine dropping a stone from your hand, as gravity acts on the stone it will accelerate,
therefore the distance the stone will travel will increase each second however the velocity of the
stone will increase at a same rate«f{ i

Distance versus Time due to Gravity
80 78.48

64 / Figure 1.2 Shows the relationship between

distance and time due to gravity

48 44
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4
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Figure 1.3 Showsthe relationship between velocity and time due to gravity

DI f A f S 2 é&sential BishyptyhRhe field came from his prior work on connected bodies.
He deduced another law stating: if one body carries another, the carried body shares the motion of
the carrier body. This law essentially explains why when we jump up from Earth we are not left
NRGFGAZ2Y I §

0 SKAYR

0e

Al a

ALIAY DT &S b@t BsNde Kre &

carried, we already posses its motion, therefore when we jump upjumnp withthe same velocity

9 | NJiok, 1888) ExtApd dtirg $his concept, he calculated that, for example, a
projectile fired from cannon is influenced by two independent simultaneous forces. The first was the
force of gravity which es vertically and pulls the projectile down towards the Earth at a rate of

la

ofXx i . The second force moves the projectile forward in a horizontal motion with uniform velocity.

GdKS

As these two forces are independent of each other, one can be varied witfieating the other.
Since gravity is quite difficult to change unless we go to another planet, allocating a greater initially
horizontal speed ofthe projectile would be recommendedConsequently allocating a greater
initially horizontal speed to the pregtile will not effect on the time taken to reach the ground since
time only depend®n the vertical distancéhe projectile has to traveln other words the time taken
to travel to travel paths P and Q on figure 1.6 are the séWikite, 2011)Croft, 1988)
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a dzNJF



415104

v

Cliff
Figure 1.4

Distance

While Galileo had grasped the relationship between fand motion the truly quantitative
appreciation came several decades later from Sir Isaac Newtdhi@bember 1642, 20" March
1727) an English physicist, mathematician astronomer, nature philosopllehemist and
considered by many to be the greatest and most influenti@rgist who ever lived. As a point of
interest, the same year Galileo passed away, Sir Ids&gton was born. Newton was aware of
DFfAfS2Qa FANRG ¢ (GKFEG 02RASa &aK2dzZ R Y2@S
familiar with the work of Johannes Kepler (Decembé?,2571¢ November 18 1630) who was a
German mathematician, astnemer and astrologerKepler had derived an equation that could
calculate the paths of planets in our solar system and demonstrated the movement to be elliptical
around the sun(White, 2011) From this Newton concluded that senforce must therefore be
acting on the planets to derail them from their straight line path, and this same force was
responsible for the fact that a body released from the hand falls towards the Earth. The absolute
genius step was to realise that both veemdeed one and the same force, hence the Universal
theory of Gravitation was bornin his famous paper namedéhilosphiae Naturalis Principia
Mathematica6 NEFSNNBR (2 a4 bSgiliz2yaQa tNAYOALAIOX
Gravitation along wth his three famous laws of motion which now bears his name even though the
first two were aleady known tdGalileo.

It should be noted that since the radius of the Earth is not constant at different locations and
also because the rotation of the Earth pides centrifugal force which additional gravitational type
affects the value ofj is not in fact constant. Agvaries with latitude and to a first approximation is
given by"Q ) 1T @ T8t ¢ L dpéci where _ is the geographical latitude of the concerned
location. Since tennis is played all over the wpthie value ofg will undoubtedly change from
approximatelyufy Wépi  at the equatorand o) occi  at the polegCroft, 1988)

We can thank the trio Galileo, Newton aAdiistotle for the correctmathematical analysis of
trajectory motion and what later followed was merely refinements of their solid foundations and
findings while to this day are still appli€d/hite, 2011)

Summary

Pagel0
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In this chapter we have looked at the history of projectiles and who were responsible for its creation
YR K2¢g Al tASa Ay (GKS @OSNER F2dzyRIGA2ya 2F a0AS
three laws of motiorand its relevant parameters.

Chapter 2 z Projectiles in Motion

2.1 - Introduction

Imagine if you will, a tennis ball waiting for you to serve. You cast your eyes down the tennis court
and look down at the ball in your hand. The ball itself possesses a number of important physical
properties, its mass and weight being two obvious examples, in addition it possesses a moment of
inertia, and its surface has a certain frictional vallieen you serve the ball with some side spin, the
ball now essentially has acquired a new range of dyngrarameters which change with time. Its
velocity (direction and speed) being one and you also applied some side spin as well, therefore
implementing an angular velocity to the ball which leadsatmther one of its properties, angular
momentum.

As the bdl travels though the air, it is subject to a number of external forces. The main force
being gravity, which is obvious, however there are a whole range of second order forces acting on
the ball as well. Since tennis is played indoors and outdoors, ooe tmuld be crosswind, drag, and
air resistance. The interplay of all these forces on the intrinsic properties of the tennis ball is what
defines the in flight trajectory and motion which is the main theme of this project.

Finally the ball lands insidéd service box, bounces up and travels past and out of reach of
the returner. The height of which the ball bounces is determined by another property of the ball, its
coefficient of restitution(White, 2011)

Beforestartingto SELX 2 NB b S6 (2 y Q& this khdfeSstaftsiby defindgfandy 2 G A 2 v
SELX FAYAYy3a (GKS FdzyRIFI'YSY (Il LINRPLISNIASE 2F &LJ2NIA
Slidz- iA2ya OFy o6S dzaSR (2 OFf OdzZ I S iskhSugRoaty | YA O&
its journey. Once the theoretical foundations habeen laid they will form the basis for the
fundamental projectile trajectory path models described in the next chapter.

2.2 - Vectors and Scalars

The parameters associated with a sportipjectile fall into two distinct classes, these being
vectors and scalars. A vector quantity consists of both magnitude and direction while a scalar
guantity possesses only the magnitude compondrable2.1 below $iows some examples of each

type.

Table2.1- Shows examples of vector and scalar quantitié&/hite, 2011)

Scalars Vectors
Distance Displacement
Speed Velocity

Mass Forcdweight)
Energywork) | Acceleration
Volume Momentum
Tempurature| Torque

Pagell
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One difference between vectors and scalars is that it is fundamentally easier to cancel out a vector
guantity than a scalar quantity. Taking displacement for example, a tennis ball served in a north
direction with a velocity atp mi . A successful retar will mean the ball will travel in south
direction right back to the point to service. The speed in both directions maybe equal, but the
velocity is of the opposite signs, caused purely by the reversal on the return. Consequently this leads
to a cancellabn of @ T @ m T i . This cannot be done with volume however, a volume of a
tennis ball cannot actually cease to exist by placing it into a negative vdivhige, 2011)

2.3 7 Mass, Weight, Force, Velocity and Acceleration

2.3.1 7 Mass

The mass of a body can be defined as a quantitative measure of its resistance to its change in speed
(acceleration) and is measurédy’ { Af 23aNJF Ya 6130 Ay {L dzyAaidaod ¢K°
change whether it is on this Earth or on theon. For example if a tennis ball is served af i

then the impact force apparent to the server when he/she strikes the ball will be the same
anywhere, Earth or Moon.

2.3.2 7 Weight

The weight of a body is due to the gravitational force of the lEant ganet. It is measured in

Newtono b0 | yR A& O f OdAf F iSR o6& YdzZ (dctderatibnyddetd 02 R@& !
gravity. Gravitational acceleration is usually measuredsit@ i  although this value can change
depending on the angle oétitude and altitude the measurement is taken at. Therefore the weight

of a body does not affect the time in which it accelerates due to gravity. This is the reason why,
ignoring drag effects, when you drop a cricket ball and a tennis ball at the samevi@nethough

their weights are different, they will both hit the floor simultaneoushhis experiment was also

done on the moon using a hammer and a feather by the crew members of Apollo 15 in August 1971.
Since there is no air resistance on the mooeyttboth hit the ground at the same time confirming all
Ff2y3 DIFtfAES2 g1 a O2 NNBD vas indepefidedt fo ftstaccdleyation dud oy 3 |
gravity.

2.3.3 7 Force

Force is a push or pull exerted on a body and will always result in a change of velocity for a moving
body. It too is measured in Newton and being a vector quantity can easily be added and subtracted
depending each of their individual magnitude and direxcti

2.3.4 7 Velocity

Velocity is defined as the rate of change of position and is a vector quantity, so speed and direction

both are need to completely define it. In the Si system it is measured in meters per sécbnd

The scalar absolute valdeY I 3y A 1 dzRS0 2F @St 20A0& Aa OFffSR &aLlS
' A0FfFN) ljdzr yGAGeE 6KSNB Fa Qyn YSUOUSNB LISN aSo:
applied as well. The average veloditpf a body through a displacemen¥c during time period

Yo is defined by the formuta

Pagel2
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b T
y

Y& being the total change in distance (displacement) ¥odhe total time needed to cover that
distance Table2.2 shows some typical speeds astgd by a range of projectiles.

Desciption Value m/s

Speed of “gh_t L. owp T Table2.2- Shows some interesting speed&Vhite,
Muzzle velocity of 10m air rifle 200 2011)

Serve in squash 40

Typical release velocity of a javeli 30

Rate of growth of human hair owp T

2.3.5 7 Acceleration

I OOSt SN} A2y A& RSTAYSR o0& lye OKFy3aS 2F @St 20hr
will be positive, if its velocity decreases then its acceleration will have a negative value. We can
define theaverage acceleration as;

a

'~<<| K

where YU is the change in velocity andfo time taken for the change in velocity and the
instantaneous acceleration as;

® —

Table 2.3 show some interesting accelerations.

Description Valugm/s/s

Highvelocity rifle bullet Cwp T

Baseball struck by a bat Gwp T Table 2.3 Showing some interesting accelerations
Football struck by foot owp T (White, 2011)

Loss of consciousness in man 70

Gravity on the surface of the Eartt 9.81

Gravity on the surface of the Moo 1.7

2.4 z Friction and coefficient of friction

Whenever an object moves in any form, there will all ways be friction present. Even in space, a so
called empty vacuum, quantumeuhanics suggests we can never be sure that an apparent vacuum
is truly empty. Space is constantly fizzing with photons that are popping into and out of existence
before they can be measured directly. Even though they appear instantaneously, these photons
exert the same electromagnetic forces on an object they encounter as normal photo(i$atias,

Pagel3
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2011) This suggests that these particles will have an effect on objects thus creating some type of
friction.

As this project ighemed on sporting projectiles, the main focus point will be on how a
tennis ball travels through the medium of air, and consequently this means analysing the frictional
forces and how the surrounding air molecules lead to retarding force also known gsTéhare are
many other frictional properties to consider, for example the way in which a tennis ball bounces
depends on the friction between the ball and playing surface. Furthermore friction between the
racket and the ball will dictate the amount of sgimat a player can generate. These fall into two
types of friction, kinetic friction and static friction. Kinetic friction applies once the body is in motion,
and the static friction is experienced order to initiate movement. Leonardo da Vinci came ufhw
a simple empirical law which quantifies friction and is relatiaelyurate:

WeKS YIFIyAlddzRS 27F (i K@lubFicatedus swfaces FshthgOand ef 06 S (i

the other is proportional to the normal force pressing the surface together and is independent of the
FNBF 2F 02y il OG0 I yWhite2ZP11)i KS NBt | GA PSS &aLISSRDQ

Kinetic friction can mathematically written &= 0 where" \is the coefficient f kinetic friction and
N is the force acting normal to the surface. The equivalent equation for static fricti@d is 0

%}

where* A4 (GKS O2STFAOASY(H 2F ailGlGAO FTNAOGA2Y D C¢KA S

static friction is greater than the applied force and the body is stationary (not moving). As movement
commences and just before the dynamic frictiake over the wo sides of the equation equalise.
Accordingly static friction is never less than dynamics friction and can be significantly(\igite,

2011) Table 2.4 shows some interesting friction coefficients.

Materials C Co Table _2.4 slhovx_/s some
- interesting  kinetic  and

Rubber on asphalt dry (wet) (motor racing 0.8 (0.75) 0.5 (0.5)| static friction coefficients

Tennis ball on synthetic carpet 0.61 (White, 2011)

Tennis ball on hard court 0.490.53

Leather on wood (cricket) 0.3 0.4

Waxed ski in snow

At 1006 0.2 0.2

At 030 0.05 0.1

25z. AxOT 1680 olioAx 1 £ |
{GdzReAy3 bSpglz2yQa ftl s 2F Y2GAz2y ArAa SaasSydalft

foundations of all motion. We will now delve the three laws of motion that Newton laid down for us
when he published his truly brilliaRthilosphiae Naturalis Pidipia Mathematicanasterpiece.

251z. AxO0I 160 AP0 1 Ax 1T £ |
bSsglizyQa FANRG tLe 2F YziAazy adGhdisay

WOPSNE o02Re& O2ydAydzSa Ay Ada andtibniirSa skaight NB a G
line unless acted upon by some external fofééhite, 2011)
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bSgii2zyQa FANRG fl1 ¢ SELINBaaSa réustdnceGesiaddawiig, @ T Ay S
stop moving once it has started. In terms of projectiles this means if no forces are acting on the
projectile which is at rest or at moving with constant velocity, then it will all ways remain at rest or at

the same constanvelocity. On the other hand, a projectile at rest or moving with constant velocity
experiences no net resultant force, meaning either no forces are acting on the projectile, or all forces

acting on it oppose each other and hence cancel out in all dirextidherefore if a tennis balls

speed or direction changes then a net force must be actifhite, 2011)

2527. AxOT 180 OAA6tionA 1T Ax T £ |

bSgli2ayQa &a4S8S02yR tte¢ 2F Y2iaAi2y adldasay

WeKS NI GS 2F OKI yoagis dirgctly vdpodofial tirthe ext®rnal forces
FOGAYy3 2y GKS o62Reé FyR (1154 LXIFTOS Ay GKS RANBOI

bSsilizyQsa aS02yR 6

O«

'y 68 6NARGGSY &Y
"0 — &0

where"Ois the force applied and- & v is the rate of change of momentumhered is mass and
is velocity. The proportionality sign can be removed and replaced by a corggving:

o W0
Qo0

The Sl unit of force (Newton) is defined such st 1 provided the mass is given in kg and velocity
inai .Thus giving:

0 — 4

b2¢g AF 6S | aadzyS vy Aa Oz2yaidlyixs S RSNAROS G(KS Y
law which is:

0 4 H (2.1)

where & is the acceleration due to the applied force. So force equals mass multiplied by
acceleration. In terms of projectile motion this means if a force acts on the projectile, then it will
accelerate in the dection of the force. The magnitude of the acceleration is equal to the applied

force dvided by the projectiles maggVhite, 2011)

253z. AxO0I 160 OEa&MmA 1 Ax | £ |

bSgilz2yQa GKANR fl g 2F Y22GA2y adakdsSay
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W2 K Sy D ékerts a force on another body, the latter exerts force of equal magnitude
FYR 2LIRAAGS RANBOGAZ2Y 2y (KS T2N¥SND

In tennis terms, striking a ball back results in an equal and opposite force acting on the ball and on
the strings of the racket. One difie jobs of a tennis racket is to absorb the impact of the forces
0ST2NE GKSe& UGN} @St dzZlJ G6KS GSyyAa LI &SNRa | Ny
(White, 2011)

These three laws of motion govern all motion aaw@ fundamental to sporting projectiles
and its flight path.

2547. AxO01T 180 AN@GMOET T 1T & |

| SNE bSgliz2yQa aSO2yR fl g gAft LINRGS (2 0SS QAllf
previous definitions of distance, velocity and acceleratiod the relationshifpetween them

b 6 Ho (2.2)
0 6 coi (2.3)
[ 606 - (2.4)
i -6 0o (2.5)

where6 is the initial velocity ab 1, 0 is velocity timed, Gis the constant acceleration, ards the
displacement from the starting point at tine

Throughout this project we shall do some worked examples to get a better understanding of
projectiles and how they operate.

Worked Example 2.1

A ball is fired from a cannon which has a 50cm barrel and a muzzle velooitg of . Calculate

the avera@ acceleration of the ball in the barrel. If the mass of the ball is 50kg, ignoring frictional
and drag resistance in the barrel, calculate the force required from the cannon to reach its muzzle
velocity.

Using equation 2.3,0 6 cOiwhered6 mi ,0 oai ,andi U DG T
rearranging this equation and makidgthe subject of the formula we get:

W — s PC@vV
However this just the average acceleration of the ball as it travels the length of the barrel. In reality
the ball would experience a much greater acceleration right at the beginning of its motion due to the

cannons explosive action.

Now using the equatiofO & @&
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26z. Ax Ol 1 @Qunitersat g ravitation

Since all projectiles are subjected to the force of gravity, it should be looked into thoro@&ihly.
Isaad\Newton states:

WOPGSNE LI NLGAOES Ay GKS | yA N:]
G2 GKS LINPRdzOG 2F GKSANI YFaaSa +y

This can be stated mathematically as:
"0 O

Where "Ois the force of attraction between the two bodies whose massestased , and whose
centres are separated by a distanceand™Ois a constant of proportionality known as the universal
gravitational constant which ig® xop m 0a 0Q (White, 2011)

The force'Qis a vector quantity that points between the centre of masses of the two bodies
concerned. We can denote this as:

0 2.6

wherer (=) is the vector from the largerbR & Q& OSYGNB (2 GKS O8BWENS 27
corresponding unit vector. From this it becomes clear that the f6Bded NB A L2 Y AAO6f S T2 NJ
motion when fired in an upwards direction, heading back towards the Earth. In the cpsej@dtile
motion, the larger massy ; will the mass of the Earth . v8o Wop T Q' BThe smaller mass,
a ,, will represent the mass of the projectile concerned andan be taken as the radius of the Earth

ie O® Wop TG . As any additionaheight that a projectile might achieve will be negligible
GKSY O2YLI NBR G2 (GKS 9 NIKQ& NI} RAdzAI GKSNBTFTF2NEB &

O '0——¢ (2.7

where ¢represents the unit vector quantity in the upward vertical direction, which can be taken as a
constant in both magnitude and directiodssuming"Oas being constant in direction over the
LINEP2SO0GAf Sa FEAIKG A& 1Y 26 Yendugh adiukaie apHr from thigh9 | NI K €
powered sniper type shots over very long distand®¥¢hite, 2011) Equatim 2.8 can now be

simplified too(Croft, 1988)

0 40 (2.9

Where @ &, 'Q — and values of (i . and i stated previously, wheréQis the known
acceleration due to gravity.

Worked Example 2.2

Pagel7
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Two pucks of mass 5kg lie on the ice at a distance of 50cm apart. Calculate the force of attraction
between them. If the static fricon between the stones and icetis 1, prove that the pucks will
not move towards each other and collide under the force of gravitational attraction.

Using equation 2.6 wher® ¢ yopm i & uvQ®EQ ™4

O ¢ P T O H P T

The required force to overcome friction on the ice is given by:
O ‘0

where0 is given byd "Qhe weight of the two pucks, thus:
O aQ TR P T8 T

From this we can conclude the force of attraction between the two pucks is almost insignificant of
what is required to overcome the frictional resistance between the pucks and the ice.

2.7 z Conservation of linear momentum v

Since momentumisavector S NJ G KFy | aOFt N ljdzZ ydAidezs bSgiz2y!
the rate of change in momentum. The momentum of a body is equal to the product of its mass and
its velocity.

- G0

wherep is the momentum of the boglwhose direction ithe same as the velocity. Momentum is
fundamental when two bodies collide together, such as billiard balls or a racket hitting a tennis ball.
When to bodies collideit is the combined momentum of the bodies, immediately before afidr

collision which is conservetiVhite, 2011)b Sgi2y Qad aSO2yR fl ¢ Yl & |faz2 o

20N
° 9y

and the kinetic energy of the body, which is the amount of work required to accelerate the body
from being stationary up to its current velocity is given by:

PN
O -av —
C ca
So if we imagine a collision of two billiard balls, white and red, on a tabléOLdenote the force
exerted by the white ball, andD 4 KS FT2NOS SESNISR o0& (G(KS NBR ol f
motion, in the case of a perfect collision with no energy being lost through sound, heat and
absorption into either of the bodiethen:

0 0

So:
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—@oo ©0 O T

Therefore p+p,= a constant, hence the conservation of linear momentum states that:

The total linear momentum of a system of interacting (e.g. colliding) bodies, on which no
external forces are acting, remains constéthite, 2011)

Wored Example 2.3

The cannon of worked example 2.1 now has a mass of 80kg. As stated before the muzzle velocity is
o i andthe mass of the cannon ball is 50kglcGlate the recoil velocity of the cannon.

Using 6 ¢ 6 m &L a v

whered is the mass of the cannon ball, is the muzzle velocityy is the mass of the cannon and
U the recoil velocity of the cannon. Therefore rearranging theaion makingy the subject of the
formula yields:

. a v U TWO U a x i
0 - i
o T C@X

LG Aa Of SFNJ GKS fFNAHSNI Iy 2062S80i0Qa Y2YSylddzy A&z
altering its velocity. A practical application of momentwan be shown comparing a forehand
smash in to a drop shot in tennis. In the case of a forehand smash, once the player has started their
action, the mechanical momentum will keep the swing going, and there is little a player can do to
interrupt the inheren rhythm of the swing. As a tennis player constantly keeps moving, there is no
point where momentum is zero, however the two points at which momentum is at its minimum
value would be, as the player pulls back his racket and prepares themselves for thendremash
and once the swing has been completed and the racket has sent the ball back towards the
opponent. Consequently it is imperative thatethracket is positioned correctly during the swings
momentum with the hitting target in mind, since correctiag error is almost impossible once the
racket is in motion. However, in the case of less powerful shots, such as a drop shot where the
momentum of the swing is smaller, therefore giving more time for players to exert corrective
influences at all stages ithe stroke. The best tennis players are able to correct their racket
momentum and change it accordingly to what their opponents are doing.

I LISNFSOG SEFYLXS 2F OKFy3aS Ay Y2YSyldzy ¢2d
where he opens up the rackeo it looks like he is about to play a drop shot so his opponent is made
to run towards the net to try and retrieve the ball. As the opponent starts to run Federer quickly
changes the momentum of his racket and slices the ball down the line past hiseqppand since
GKS LIXF@8SNJ A& fNBFR& NHzyyAy3a YR KA& Y2YSyddzy 7
direction and are often left unable to retrieve the ball. Fedademonstrates this shot exquisiteht
the 2012 Australian Open againssfiirst round opponenflexander Kudryatsueat 7-5 62 3-2 300
GKSNB dzLl2y | FGSN) G6KS akKz2d ¢l a LI @SR GKS 9dz2NRB &
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Tomic look a bisilly on the court.
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2.8 z Conservation of angular momentum

0S8
i K

Ay

Bodies moving in a straight line and those moving in a curved motion have a considerable amount of
correlation in mechanics. Many equations stated previouslyeha correspondence in circular

motion, therefore if the correct sultisutions for the variables are made, they will correlate precisely

(White, 2011)

Translational quantity

Rotational analogue

Table 2.5 Shows rotational analogues of

Massv(m)
Velocity(v)
Force(F)
Accelerationa)
Distance(s)
Momentum (p)

Inertia(I)

Angular velocity]
Torque(T)

Angular acceleratior
Angle —

Angular momentunglL)

translational motion (White, 2011)

¢F1Ay3 bSsiz2yQs tl+¢ 27

i 60 -G

will transcribe directly to:

Y2iAaz2y Slidd Gdrzy

P .
—_ ‘ 0
q

H®PnY

where] is the angular velocity at time t=0 and the other symbols are defined in the table 2.5
above. Also from the table we can see that the angular momentum of a body is given by:

0 O

The principleof conservation of angular momentum states that:

The ptal angular momentum of a system is constant unless an external torque acts on it.
Angular momentum is important when considering sports projectiles as the spin of a tennis ball will
change its trajectory path through the air. An example of changing angubmentum would be a
spinning iceskater, who while spinning will bring their arms in closer to the bodghwals a result
concentrates their mass closer to the spinning axis of rotation and consequently reduces their
moment of inertia. This results imancrease of angularelocity and thus an increase of rotational
kinetic energy. The extra energy is produced from the work done as the skater brings their arms in
towards the body against the centripetal force tending to pull their arms outwards. Fr@anad
know the moment of inertia is the reluctance of a body to rotate around a given axis in the same
way a body is reluctant to move in a linear motion due to its mass and static friction. It is calculated
by summing the products of all elemental masséthe body with the square of their distance from
the axis of rotation(White, 2011)
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Shape Formula Comment

Solid sphere (rotation 0 -ai Mostcommon solid balls such as snooker
around any axis through center) balls or cricket balls

Hollow sphere (rotation ‘0 -dai Most inflated balls such as squash balls
around any axis through center) tennis balls, footballs

Solid cylinder (rotation through O -d&i Spinning discus or rifle bullets

long axis)

Hollow cylinder with inner 0 -dai i Spinning javelin

Radius=rand outer
Radius=f(rotation through

Long axis)
Thin rod rotated around one end™O -& 0 Approximation of the shaft of a striking
implement
2.9 z Work, impulse, power and energy
2.9.1- Work
LF | 02ReQ&a Y2GA2y Aa | NBadzZd 2F GKS F2NOS 0SA

the body. The work done can be writtas:
w Oi

where Qs the work done measured joules (Dis the force applied in newtons (N) ahdepresents
the displacement in (m). In a tennis situation, the projectile (tennis ball) is launched by means of a
sharp impact with an appropriatenplement (tennis racket).

2.9.2 Z Impulse

Yy26Ay3d bSsd2yQs 4802yR t16 2F Y2iArz2y Oy 0S5 &NX
o _

For a body with constant mass and summing over time we obtain:
. 0Qo, Qauv a,_, Qu

where the term  "OQu@presents the irpulse (units Ns) and is equal to the change in momentum,
or if the mass is conaht, the change in its velocifyVhite, 2011)

Although in many sporting texts much importance is given to properties such as the velocity
and theforce applied, however it is often the impulses created by athletes that are responsible for
the large forces and velocities achieved by the projectiles. Taking the bowling action in cricket for
example, one may think in terms of the ball release vejptitit what really accounts for the velocity
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is a series of impulses resulting from the ground reaction forces in the run up, the delivery stride and
placing of the feet and finally the bowling action of the givhite, 2011)

2.9.3 7 Power
Power can be defined by the rate which work is done and is measured in watts:

0 P

where0 denotes the instantaneous power (W) ane is the rate of working Ui

Worked Example 2.4

A tennis player applies a constant force of 500N while serving the ball. Calculate the power in the
serve and work carried out by the athlete if the serve action is 2.5m long and lasts 0.5s.

Usingw "Oi

The work done in launching the tennis bakk® cu T T p ¢ LUT

The power the tennis player puts into the serve—iss— ¢ L TTT

2.9.4 7 Energy

A body that is capable of carrying out work is said to possess energy. The amount of energy a body
possesses is equal to the work it is capable oflpoing. Being a scalar quantity, there are two
types of energy to be analysed, which are kinetic and potential energy.

2.9.4.1Z Kinetic energy

Kinetic energy is the energy a body possesses purely because it is moving. If a body®fhaass
velociy U, then the kinetic energy is given as:

O -d4abv
This tells us kinetic energy @ £ Odzf | G SR o6& YdzZ GALX @Ay3 | 02ReéQ&

multiplying that result by a half. So for a body to possess kinetic energy it must be in motion i.e.
velocity must be greater than zero.

2.9.4.2z7 Potential energy

Potential energy is a little bit more complicated as it is the energy a body possesses by virtue of its
position or due to the arrangement of its component parts. Potential energy is the stored energy.
However potential energy can also be in any resiltadt when it is hit by a striking implement, or

Page22



415104

when it bouncegWhite, 2011) At the point of impact, the ball will distort from its natural spherical
type shape against the elastic forces of the material. Like a footbalérumig ball, they have a
tendency to return to their natural shap&Vhile the ball is in its distorted sates, potential energy is
stored which when the ball returns to its natural shape is then released. During a sporting projectiles
flight, it will be subgcted to a gravitational force, if the mass of the bodydisand has been
displaced by a heigh@ this will give:

Of WL Q0 )¢ "QEEEATOD H@HTD
Conservation of energy
The conservation of mechanical energy states:

In a system in which the only forces acting are associated with potential energy, (either of a
gravitational or elastic nature), the sum of the kinetic and potential energy are a constant.

In the case of a sporting projectile, the sum of the kineind potential energy will remain constant

over the whole duration of the flight. For example, imagine a tennis player throwing a tennis ball
vertically up and then catching it at the same position. As the ball leaves the hand with a certain
amount of khetic energybased on the velocity the ball is thrown at, and at this point has no
potential energy. As the ball rises, due to gravity, the iatevhich the balkises decreases and this
gainspotential energy until at the top of the balls motion whétédnas zero velocity. At this point all
F2NOSa | NB Sljdz ¢ YR A& 6KSNB (GKS olffQa YIEAY
energy. As the ball starts to fall back towards the earth the reverse process happens. As the ball
descends and loses héig it also loses potential energy while gaining kinetic energy as its velocity
increases. The will eventually arrive back in the hand with same kinetic energy as when the ball was
thrown up and the same velocity but with opposite signs reflecting the sippdlirection of travel.

Worked Example 2.5

A tennis player throws a ball vertically upwardst&da i . Use the law of conservation of energy
to calculate how high the ball will travel.

By the conservation of energyhe kinetic energy lost whil¢he ball is going up is equal to the
potential energy gained. Therefore at all times in the flight:

-au  a'Mm
Rearranging the equation gives,

0 —

P81 acg

Summary

In this chapter we have covered most of the fundamental physics required to commence trajectory
calculations in the next chapter.
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Chapter 3z Motion of projectiles under
gravity

3.1 z Introduction

CKSNBE IINB Ylyeée gl &a ndionNBeIME afende oflgravih®re sfGhé A f S QA&
elementary methods involves the motion of the projectile in two orthogonal directions, and then
recombinesthem into one single force. F@porting projectiles, these directions are often thought

tobehoi 2y iFf FyR @GSNIAOFIE $gAGK NBaLSOda G2 GKS 9 N
other assumptions made for this chapter will be:

9 The projectile is small, heavy and round, thus is subjenetgigibledrag and lift.

1 It is assumed to be mownstill through the air i.e. there is no cross, head or tailwind to
disturb its trajectory.

T ¢KS LINBP2SO0lAfSQa adaNFIFOS Aa avz22iK FyR (KSNS
subject to any form of swing.

1 Unless otherwise stated, the projedtilis launched from ground level in some upward
direction, and lands also at ground level: the ground is assumed to be horizontal and flat.

T ¢l 1Ay3 -SIFKNSI K@F fHraia dzy LJiA2y s ¢S OFy aidlrasS Gk
adzNF I OST Ay LI NFttSt tAySa 2F FfdzE (KNRdzZIK?2 dz

Taking such assumptions into account, we can state the only force influethe@nigajectory,
after the initial impact, is the force of gravity. In addition, the only force with regards to the impact
are the velocity and angle of the projectile immediately following the impact. Therefore, if values for
gravity, initial velocity, adh initial trajectory are known, it is possible to fully describe the motion of
the projectile in terms of distance, time, maximum height, etc, following impact.

The initial velocity of the projectile is denoted tiyand its initial angle of trajectoriyn — to

the horizontal plane, the velocity can be resolved into two orthogonal components, whiah are

andv as follows:

(3.1)
0 UL wWéE+

(3.2)
O Li Q&

where0 Ada (GKS O02YLRYySyid 2F (GKS @St 20»b (rapreseditsNdef f St ¢
component orthogonal to it and parallel to the force of gravity. Taking some valuesgofes us the
following:

— T U- In this case boti "Q¢ and wé—+ T& T ¥ therefore both horizontal and vertical
components of the velocities are the same, and are 0.7071 of the actual launch velocity.

— @ 1- The horizontal component will be exactly half of the launch velocity, whilst theécaért
component is 0.866 of the launch velocity.

— 0o 1- The inverse ofp tcase arises. This time the vertical velo¢gyhalf the launch velocity,
while the horizontal velocity is 0.866 of the launch velocity. Interestingly poftandc @will result
in the same range achieved.
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— 1 - In this scenario, the horizontal velocity component is equal to the launch velocity and
there is no vertical velocity component. Thus, the projectile is rolling along the floor.

— wTEIn this case the projectilesinow being launched directly upwards, and the vertical velocity
component is equal to the launch velocity and there is no horizontal component. Consequently the
projectile will decelerate, reach is peak (maximum height) and fall back down to Earth,dandin
precisely at the launch point.

3.2 z Horizontal motion

If you would, imagine a football being kicked high into the air and down the pitch, like a goal kick
from the goalkeeper. The componewnt would represent the velocity that the kicker would haee

run in order to stay directly underneath the ball over the whole duration of the flight.

On the basis of the assumptions stated above, after the initial impact of the kick, there will be no

force acting on the ball in thédirection. However, in a&NRI yOS A 0GK bSgliz2yQa &
velocity cannot changealong this direction i.e0 remains constant for the duration of the flight.
Once the ball lands other forces will come into effect, some of which are discussed in the later
chapter. Likewise, once we start to consider more complex aspects of flight, such as drag, spin and
dynamic ift, the horizontal velocity is indeed subject to change and does not stay constant over the
duration of the flight.

If one wants to know the position of the projectile along théirection at any point in time
0, while the projectile is in flight is\gen by:

i 0O U0 @& (3.3)
Worked Example 3.1
Jan Zelezny achieved a 98.48m world record javelin throw in 1996. If the time of the javelin flight
was 3.82s and the angle wasgwhat was the velocity. Conditions apply from 3.1.

From Equation 3.3:

0 g o @ X&i

3 3 @ x oo

3.3 z Vertical motion
The vertical component of velocity is subject to constant gravitational fdite ¢ KA OK | & 9 N

suface is aroundu®) @i . The resulting vertical motion is equivalent to an object being thrown

directly upwards, it reaches its peak at which point velocity is zero and thus drops back down to

Earth at ratetd The governing equation in this resolvetid OG A2y A a G 1Sy FNRBY bS
of motion, Equation 2.4:

[ 00 - ULOI-QE-¢ (3.4)
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This equation is of a quadratic form @ and tells us for every allowable valie, there are
potentially two values ob. Ths means the projectile will pass though pdinton the way up at time
0, and then pass through the same pointagain on the way down at some later tirbe

LG Oy 06S akKz2gy GKFIG OSNIAOFE Y20A2y wka agvyy
can further assert that the projectile takes exactly the same amount of time to go up as it does to go
down. Furthermore, at each positidmetweenrelease and peak points, the speed of the projectile
on the upward path is the same #se speed on the downward path through that point. Only the
sign changes for velocity vector. So throwing a tennis ball for example into the air so it leaves your
hands afpa i and catch it at the same height, it will land in your hands at a velocitypafi

Plotting for a typical sporting projectile (a football being kicked half way down the pitch), the
time duration of the flight against the vertical distance we will get the familiar parabola of the
quadratic function of Equation 3.4

: e e i e 2 e e el

| ”, Figure 3.1¢ Distance time graph of a

1.6 . . . .

projectile launched with a vertical

component velocity of 0Ov . It reaches

its peak height of 1.83m and is in flight

208 for 1.25s(White, 2011)

0.6

0.4

0.2
0

Time (8)

Worked example 3.2

In order to juggle four balls at the same time, the balls must be in the air for 0.8s. Assuming the ball

move in a vertical direction only, (juggling with one hand) calculate the throw velocity and then the
height the balls must achieve.

As the balls ar¢ghrown and leave the hands, the velocity redudesm the throw velocity,u , to

™y i in half the total time being 0.4s. It does this as it decelerates at a rai@ofi i . The balls
must be thrown al o) ET@a | odcai

Now usimg Equation 3.4:
i 0O -0

oRC OB ——om T Yd

3.4 z Combined motion
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As long as the assumptions listed in 3.1 apply, a projectile launched at some-anglethe
horizontal plane with velocity , will have a velocity component3,and0 defined in Equation 3.1
and 3.2. The projectile resultant motion at all times of the flight will be a combination of the two
orthogonal motions. The vertical motion is governed by the launch velocity compamnerand for
the horizontal component) a simple linear motion with constant velocity.

We can combine Equations 3.3 and 3.4 by eliminaijige derive the projectile equatioim
Cartesian coordinates. From Equation 3.3:

0 —
U

Substitutng into Equation 3.4:
i 0 — -0 — (3.5)
By trigonometry on the velocity vectors
0WweE —
i i 0 we
i i 0 — (3.6)
EqU A2y odc A& | ljdzr RN GAO TFdzy OliA2y gKSNB GKS

gravitational forces, launched at an angleto the horizontal plane and with velocity . This will
formulate a parabolic shape which passes through the poifhunch with a positive gradient et

and lands with gradient of —.
Figure3.2¢ The trajectory path
of a projectile launched at

Ov atan angle 43to the
horizontal plane. Its peak height

1.5 W s i cox ) being 1.63m and range is 6.5m

/ ‘ﬁ (White, 2011)
1

/'/ £y \
0.5

2=

Horizontal distance

3.4.1 z Further results

As a tennis ball is hit, the velocity will not stay constant throughout its entire flight.
Therefore to find the speed of the ball at any given point in its trajecbas/given by:
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launch,—is given by:

Owe

0WNE 6wt —i Qo (3.8)
This result couldlao have been derived by differentiating Equation 3.6 with respect ¢p

O HOE — OmE —— (3.9)

Whenever either Equation 3.8 or 3.9 equate to zero, this mepresent the apex of the projectiles
trajectory. (Gradient of trajectory is zero)

s (:‘:bj ;oo ¥
T 0 WE A i Qo
whereo; denotes the time taken from launch to apex and will be half the total time of flight:
0.
J R
By symmetry, hence, the total time of flight will be twiced; giving:

o —— (3.10)

Using Equation 3.9 we can also obtain the total range of the projectile. A the apex'Chg) Qi
n85o:

T o (et

wherei ; is the horizontal distance launch to apex:
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—i Q&
By symmetry, therefore, the total range of flight will be twicei ; :

i —i Q& (3.11)
We can now state that a projectile which is launched at coordinates position (0,0) with launch
velocityv and a launch angle-, will land at coordinates:

—hn

In addition it will pass through a peak altitudéthivcoordinates:

In sporting applications whether it bghot put or long jump the most important parameter to be
maximized is normally the total distance travelled, or the total range of the flight. So what will be the
optimum release angle to ensure the maximum range? Using Equation 3.2l reach its
maximum wheri "@é&-achieves its maximum value of unity i.e. wh@rE T ¢— This will be when

¢— w Tthus the best angle to launch a projectile to achieve the maximum ranggejs 1 U.
However this is only trugvhen assuming the conditions stated $ection 3.1. Especially the launch

and landing points must be at the same height, in most sport cases like a tennis serve or a javelin
throw this is not the case. Therefore a more complex analysis must be performed in order to
determine the optimum releas angle under conditions of different launch and land heights, and is
the subject of the following section.

LG OFy aSSy GKIG I LINR2S @dl hg—S Dndlyilythg range it & RS L.
very sensitive to variations in the release \@tpv but less sensitive to the variation in the release
angle—. Table 3.1 has indicated this clearly. This explains why a typical launch velocity of a javelin is
o J and not the ideal launch angle af J. Biomechanical constraintémit the launch elocity
achievable at the higher angle, and it is worth sacrificing the optimum angle to receive the increased
throw velogty available at the low angld$Vhite, 2011)
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Range (m) Release velocity (m/s)
angle(deq) 4 6 8 10 12
30 1.41 3.18 5.65 8.83 12.71 Table1.1 shows the range of a
32 1.47 3.3 5.86 9.16 13.19| projectile in meters for different
34 1.51 3.4 6.05 9.45 13.61| Vvalues of launch angles and launch
3| 155 349 6.2 9.69  13.96| 'Clocly(Whie 201
38 1.58 3.56 6.33 9.89 14.24
40 1.61 3.61 6.42 10.04 14.46
42 1.62 3.65 6.49 10.14 14.6

44 1.63 3.67 6.52 10.19 14.67
46 1.63 3.67 6.52 10.19 14.67

48 1.62 3.65 6.49 10.14 14.6
50 1.61 3.61 6.42 10.04 14.46
52 1.58 3.56 6.33 9.89 14.24
54 1.55 3.49 6.2 9.69 13.96
56 1.51 3.4 6.05 9.45 13.61
58 1.47 3.3 5.86 9.16 13.19
60 1.41 3.18 5.65 8.83 12.71

Worked Example 3.3

PaAy3a WLy %StySieqa NBO2 NRowRScalédea\theamSximirh height & NJ S R
the javelin, and the velocity and angle with which the javelin hits the ground. How much further
would the javelin have flown if it had been throwntatJ.

The coordinates of the peak are calculated using:

h

Therefore,

————— PWG
Using Equation 3.8 we can calculate the angle that the javelin makes on impact with the ground:
ONE-BGBE —1Ii Q&

8

0 GEQ 5

T’ CQU— TG QW
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— O @ pJas expected
Equation 3.11 allows us to calculate the maximum range ift U
i —ie: ——i @n prwd

Such a range is yet to be accomplished in competithite, 2011)

3.5 z Motion of projectiles at different levels

3.5.1 z Introduction

¢tKS GKS2NEB adGlF4dSR a2 FFNI KFa aadzySR 0KS KSAIKUG
height in which it lands. Obviously, thésnot always the case in sport, maybe in football and golf we
can assume this. However, in vast number of cases, the launch height will indeed be different to the
landing height.
We can extrapolate the theory above to include different levels of lawaruh landing for
simpe cases. If the landing poidtis a vertical distanc&above the launch point’Q 1 we can
conclude the time of flight and the horizontal distance covered. If the projectile lands at point
which is below the origin,th& T Firstlet us find the time the projectile is in flight. From Equation

3.4 and putting in the valu&Xor i , we obtain:
Q LOI-WYE-w

In quadratic from this yields:
-00 Lo Qm

The solutions fobtherefore are:

When0 i "@¢ Wcd3Q the solution is a complex number indicating the projectile never reaches
the height'Qwith the chosen values aj and —. However wher) i Q¢ Vc@Qthere are two
possible solutions fab. One where therojectile travels up and the other when it comes back down.
When"Qs negative, the lesser value @fs also negative and can be neglected.

Since the time of flight has been calculated, we can derive the range by simple inserting the
values ofbinto Equation 3.3:

i (3.12)
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We are now interested in the optimum launch angle and resulting maximum range for atgiven
when the launch and landing height differ &y We can derive this from Equationl2 but it is
simple to use Equation 3.6 to obtain the same result. W begin by equatitag'Q

Q0o 0E —— (3.13)
Differentiating with respects te—yields:

n —oWe i OAA —OA— —OAAOGGE
As we did before, we séli | ‘Q—to zero to locate the point of maximuif i , thus:

n i OAA —OAAL G
Simplifying gives:

m i p —O0we

giving two solutionst T, trivialand is neglected, and:

[0 HEd (3.14)

Now Equation 3.14 can be substituted into Equation 3.13 to obtain the maximum distance the
projectile travels in the horizontal direction when it lands at a different height than the launch
height.

N (3.15)

From Equation 3.14he optimum angle of projection is:

Ol Hobi— (3.16)

Equation 3.15 and 3.16 demonstrate the allowable angles and subsequent maximum acquired
distance, a¥)varies.

First consider firing onto a raised platform, making the valuépbsitive AsQincreases
FNBY »n dzZLJ 2 | 0Wkdir REDNBO aB&A FRMB Y2R Ga Wt S@St Q ¢
Equation 3.11, down to zero, whé@ 0 F¢w This represents the maximum height the optimum
angle,—, increases front Jup to a theoreticalw @ This proves the projectile must be launched
vertically up to achieve its maximum possible height.
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l'a FYGAOALN GSRZ f1 dzyOKAy3 LINBP2SOGAE Sa 2yid2
the lower the level, the further the jectile will travel { © H> . Furthermore as3° Ho, the
optimum angle—© T0.

Summary

In this chapter we havelelved into the realms of simple projectilie motion takimgto the
assumptions made in Section 3.1 into account. We have concluded that the initial velocity is more
sensitive to the range than its initial releaaagle in sectior8.4. In the following chapters we will
start to remove the assumptions and take irgocount factors such as drag and spin to effect since a
tennis ball is subjected to all these factors as it travels.

Chapter 4z Drag and lift

4.1 z Introduction

Aerodynamic forces \

/ Direction of motion

Figure 41 - Shows the aerodynamic force€Croft, 1988)

When a tennis ball is hit by a racket, it will travel through a fluid (i.e. gas or liquid), usually air as it
progresses on its pathThe displacemenbf the medium (air molecules) as it moves out of the path
2F GKS LINRP2SOGAT S adtivelorkk @ $he praestited whiciNERtRtd=b& & doivn. NB
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Therefore as a projectile carves its way through the fluid, the air molecules will; (a) change direction
as they are pushed out of the way by the projectile, or make a detour around it, anddin) sdme
new mean speed, superimposed on the random Brownian motion of the otherwise undisturbed
moleculegWhite, 2011)

This reactive force of the fluid which impedes the flow of the projectile is known adréite
force. Dag is made up of friction forces, which acts parall®d G KS LINRP2SO0GAf SQa & dzN
F2NOSaszs gKAOK FOGa Ay | RANBOGAZ2Y LISNMSWYrRA Odzt | N
Ffglea |O0Ga Ay 2LILIRAAUGA2Y otien2and itk Magritid® @oSalfiish f S Q &
approximation, is proportional to the square of its velocity. Taking our case of simple parabolic
trajectory , the drag vector will changkrection continuously over the whole flight duration in order
to always act alog the tangent of the parabolic cungghite, 2011)

In most cases drag is thought to be in all aspects unhelpful, in most sporting applications,
usually speed or distance should at all times be maximized. However, the asgmsieipe of a
particular projectile, or the way it is thrown or hit, may result in a component of the drag force
which actsw @to the direction of motion. This vector will have a considerable component acting in
opposition of the gravitational force: thiis known as thdift force. It is this lift force that keeps
aircrafts flyingand in sporting terms can extend the period of time the projectile is in the air,
consequently allowing it to travel furth€wWhite, 2011)

In summary, over a limited range of velocities faster than what we call slow in sporting
terms, we can state:

O 07 6- (4.1)

O 0" 6 (4.2)

where"O and"O are the drag and lift forces respectively, andd are the coefficients of drag and
lift respectively,” is the density of the fluidd is the frontal or crossectional area exposed to the
flow, andv is the velocity of the projectile relative to the fluid. Therefoas velocity increasesph
only do the air molecules sweep past the projectile faster which creates more friction, but
O2NNBaLRyRAy3Ifte Y2NB WYl aa 27F LI NIAOfSa LISNJ
change per second increases as a product of the two, and the irgsditirce is equivalent to the
change of momentum divided by time.

The drag force will cause a retardation of the projectile which is inversely proportional to the
mass of the projectiléWhite, 2011) We can write this as:

QX
(V)]

I Q0 wi Pu6-0e+

Table 41 shows the common sporting projectiles in order of, the reciprocal of their retardation

values. It lists the balls least affected by drag at theand those which slow down considerable by

virtue of, either their large size, or their light weight, at the lower end. However some of the larger
sporting balls such as footballs and basketballs are not listed, this is because of their diameter is such

that, in normal play, they will break what isN6¥ SR | & G KS ONX i Woite,f201ySey2f R
When this occurs, drag reduces significantly.
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Type of ball | Mass m (kg) | Diameter d (m) | m/d(kga )

Lycrosse 0.142 0.0635 35.22
Cricket 0.156 0.07 31.84
Hockey 0.156 0.07 31.84
Golf (uk) 0.046 0.041 27.36
Baseball 0.17 0.074 31.04
Golf (US) 0.046 0.043 24.88
Table tennis 0.0255 0.0381 17.57
Squash 0.024 0.04 15
Tennis 0.0567 0.0635 14.06

Worked Example 4.1

415104

Table 41 shows the retardation
values for common sporting
projectiles(White, 2011)

The ITF (International Tennis Federation) has for some time been concerned that their game is

i dzy Ay 3

Ayidz b

WDl YS

2F F

oS

aSNBSaQo

Ly |y STFF2N

returns and more prolonged rallies, they have approved a new ball specification which is 6 percent
larger than the traditional ball, and 2g heavier. If the traditional ball is 6.35cm and its mass is 58g,
what is the increase in retardation of the new baler the traditional?

Retardationis calculated by:

i Q0 wi

Retardation of traditional ball:

8

T8 X

and for the new ball:

8

8

TBIX UL

This shows there is an increasfeabout 8 percent over the old balls.

4.2 7 Types of drag

Ball direction

@ Figure 4.2; Creation of eddies around a travelling ball
®)
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Primarily there are three types of drag, these are surface or friction drag, form drag and
interference drag, and wave drag. Each typeurs in different situations and have different effects
on the projectile.

4.2.1 7 Surface or friction drag

When a projectile cuts throw the air, the layer of air molecules which come into contact with the
surface of the projectile, to some exterget dragged along with the projectile and in doing so pick
up energy from the moving projectil@hese molecules in turn, cause the next layer of molecules to
be dragged along. The process continues for several layers until the energy transfer between the
layers become negligibl&he energy that the molecules pick up can only come from the projectile
itself, thereby slowing it down. The projectile not only carries itself, but certain amount of the
surrounding air molecules along with it. This type of agramic flow is callethminar flow,and the
moving layers of air proximity to the projectile are known as the boundary layer.

As velocity increases, the boundalgyer thickness reaches a point where it becomes
unstable, breaking down forming a serieseafdy currents which surround the projectile. This will
reduce the drag, usually quite considerable and rapidly, creating what is knovurkagent or
chaoticflow. The velocity of the projectile, its surface area, and surface roughness and the viscosity
of the fluid in which is it travelling through will govern both the magnitude of the surface drag and
the point of onset of chaotic floWhite, 2011)

4.2.2 7 Form drag and interference drag 1

Form drag, which is also known as profile or pressure drag, arises because of the shape of the
projectile. Projectiles that have a larger cressction area in the direction of the trajectory path will
have a higher drag than thinner ondxojectiles whib are sleek and streamlined in nature such as a
javelin, where the crossectiononal area changes over its length are also a vital for achieving
minimum form drag. However right at the back of the javelin something knowimtesference drag
occurs.

Interference drag is created whenever two surfaces meet at a sharp angle, or even where
two parallel surfaces are spaced closely together, even if they happen to be in line with the airflow.
In such cases complex vortices are created in the vicinity of thiegdile, which trap both high and
low pressure regions in a highly localised manner, disrupting the movement of the propstile
travels through the air. Fairings are added to fast moving vehicles to smooth out the surface, leading
to significant rediction in interference dragWhite, 2011)

4.2.3 7 Wave drag

Wave drag is created by shock waves building up around the projettiéze is a limit to how fast

the air molecules can move to accommodate the travelling ptidg@nd once the limit is reached,
stability can only be maintained by the generation of longitudinal waves in the air at the front of the
projectile. As the projectile forces its way through those waves considerable energy is leached from
the projectile and may result up to a fourfold increase in drag. This would be enough to cause the
projectile to destabilize and tumble to the groufid/hite, 2011)
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4.3 z Linear resistive medium

1.8
1.6
1.4

Figure 4.3; Variation of f_with § |

1.2
Co 1
0.8

0.6 -
<« Recrt

0.4 | ﬂL,

0.2

O 07 6— (4.3)

In the simplest cases of drag, Equation 4.3 will be used &vithp implying the resistive force is
proportional to velocity (only true for very small objects). Therefore the drag will vary in magnitude
and direction over the whole duration of the flight.

Assuming a projectile is fired fronground level with launch vetity 0 and — to the horizontal a
constant’Qwhich defines the resistance coeifnt per unit mass, using standard vector notations
GKS Sljdzr 6A2y 2F Y2iA2y FT2N GKS LINRP2SOGAtS A&
second law of miton.

0 4d a— 4o
. f0)
l "0 'r@ (44)

We can solve Equation 4.3 faand cocomponents repectively, with values at launch being:

— —0 0,0 O ,0 O ,» T I i i

— K0)
—  Q Qo
therefore:
aéQ Qo
0 0 Q —
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Ci —p Q (4.9

Solving vertically:

_ “Q 'F'Q)

therefore:
-0 £ @—— o]

b -0 Q - — (4.6

Ci —® ™NQp Q — 4.7

Combining Equation 4.4 and 4y equatingo, to obtain the equation of the trajectory. From
Equation 5.6:

0 -0€Pp —
now subsitute into Equation 4.6:

i 0 -— —0&£P —
However 0 @ é—ando L i "Q& Therefore:

[ (oMmE — —aé QP —— 4.9

Worked Example 4.2
Ly G4KS OFrasS 2F Wy %SftSiyeQa ¢62NI R NBO2NR 2l @St
at 36Jto the horizontal plane, his throw velocity was@ % i . Calculate the height of the javelin

when it is 20m from the thrower (a) in the degrees case and (b) when there is a drag coefiient,
of 0.07.

For the drag less case, using Equation 3.6 we get the following:

i i 0 we
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¢ TWO GIEQP
pPBC — p@RG
Now for the case where the drag coefficient is 0.07, using Equation 4.8 yields:
i iowe — —aé¢Pp ——

8 8 .+ .« 8
8 8 8(18@ 8

CTT GO @
p®O TS CTTL € 'MT @
=14.53+108.7811.77

PA M

When taking into drag factor we see a reduction of 1cm only.

4.4 - Lift

2SS ad0FrdSR SINIASNI GKIG GKS RANBOGAZY 2F (KS
changing direction ast travels along its trajectory, however acts against that direction. By
comparison, the lift force is always orthogonal to the drag forgith the exception of the vertical
throw; it will always have a component that opposes the gravitational force which will align when
the projectile is at its peak height.

However, for a notspinning, smooth ball travelling through the air, the lift do@ént 6 is
negligibly small small when compared to the drag. On the other hand, this is not the case for a back
spun ball, which will hava considerable value @f , resulting to a obvious altered flighSimilarly,
placing top spin on a ball reduces the lift coefficient to the point whtre lift force acts
downwards, adding to the gravitational force which again changes the flight trajectory considerably
(White, 2011)

4.5 z Headwind, tailwind and crosswind

It is quite simple to deal with headwind and tailwind mathematically. To a first approximation, we
shall assume wind flows horizontally only and thus only ¢theomponent of an appropriate
parametric equation is affeetl. Taking a simple case of no drag, other than a headwind or tail wind,
Equation 3.3 can be modified to:

i 0 0VOm&Ei "o
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where" is a parameter representing a constant wind force over the complete duration of the flight.
Simple vectoanalysis leads to the resulting throw vector relative to the headwinggiven as:

) ) cL O&i "
while:
0 WE bo—

whered  &idhe angle of the ball relative to the headwind.

VoCos B,

Figure 4.4a, b) Crosswind vector calulation
o
(a) Direction in which ball is propelled

(b) Flight of ball over ground

With reference to Figure 4.1a, assume the bapirispelled along OA with a constant velocityof
and a launch angle ef to the horizontal plane, with the wind travelling through left to right of
value". The foward horizontal velocity vector OA will have a magnitudé @ é—. Vector OB will
be the velocity relative to the airflow, and the anglewill be given by the equation:

0 @E .

Now, looking at figure 4.1b the path of the bedlative to the air is represented by the vector OC at
an angles with direction OE in which it is actually propelled. Nevertheless, the ball will travel over
to D; the sideways deflection being given by the vector ED. If the time of flight givenwigd
speed is-then CD is equal te 6ThereforeO'0O 6 O 6 O — 0 YO @&

-0 -0 — 4.9)
Worked Example 4.3
In an American football punt a ball is kickedpattto the horizontd plane, atc & i . The range is

22m and the time of flight is 0.6s. If it is kicked in a constant crosswingh @f , calculate its
deflection.
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Using Equation 5.19 we get:

00 -0 —— Y —
bord @ L& @
Summary

In this chapter we have looked at drag and lift andvitbey are created and affect a projectile. Also
we examined headwind, tailwind and crosswind and they all affect the trajectory of a projectile.

Chapter 5z Impact and bounce

5.1 - Introduction

CNRY |y SySNHe LRAYyG 2F @GASsrI GKS YSOKIyAay 27F
kinetic energy into an elastic potential energy as the ball distorts. In its distorted, stetgootential
energy is stored within the ball, as the ball $¢ato return to its normal shape, it gives up this
LRGSYyGAlf SySNHe& (2 GKS 02dzyOAy3a adaNFIFOSd . & b
which reacts back onto the ball impacting kinetic energy upon it, and this the ball lifts off in the
oppositedirection to that of the initial impact.

It is clear that during these processes of bouncing where energy is being transferred, there is
opportunity for energy loss, by sound, heat and molecular processes. Therefore reducing energy loss
will result a bdl attaining its optimal bounce potential.

5.2 z Coefficient of restitution

The coefficient of restitution (CoR) of an obje&®, is a fractional value equal to the ratio of
velocities before and after impact. Therefore a ball which has a theoretadakwof'Q p would
collide with an object perfectly, elastically meaning the ball would bounce back up to the height in
which it was dropped at (Impossible). By contrast if a ball had a val(e afi, it would on contact

stick to the impacting body and nbbunce at al(White, 2011)

5.3 z Normal impact

Two bodies colliding with velocities just prior to impact@fand 6 , and velocities immediately
after impact ofb andv , the (CoR) is given by:

Q — (5.1)
where ¢ is the initial velocity of the first bodyj is the initial velocity of the second body, is the

final velocity of the first body and the final velocity of the second body. For a body bouncing off a
static surface at Qlis giverby:
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Q - (5.2)

where ¢ is the speed of the body immediately prior to the impact and the speed immediately
after the impact. For a normal collision Equation 5.2 can be written as:

o (5.3)

whereQis the drop height an@@ is the bounce height.

Type of ball CoR Table 5.1 shows some interesting CoR

Tennis ball (old) 0.712
Tennis ba(hew) 0.67

Basketball 0.6
Baseball 0.55
Field Hockey 0.5
Cricket ball 0.31

Worked Example 5.1

Use the CoRalues from table 5.1 to calculate the difference in height of bounces between an old
and a new tennis ball when they are both dropped from a height of 1.6m

Using Equation 5.3:

Q X PpC —

Q T P G wpep

Q @) pp
Q  TX 5
Q T X PP
Q T pay

There is a 9.3cm difference between old and new tennis balls.
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5.4 z Oblique impact
5.4.1 z Inelastic bounce on a rough rigid surface

CNAOGAZ2Y I RR&a | O2y&aARSNIotS O2YLX SEAGE &aAyOS:
angle, there is a tendency for the ball to rotate due to the turning moment of the frictional force on
the ball. The rotation extracts energy out of the lme, and the amount of rotation created is
dependent on the incident velocity and angle, CoR, and friction between ball and surface and the
moment of inertia of the ball.

Figure 4.1 shows a ball of massand radiusiy approaching from the left with aimcoming
velocity 6, rotating at an angular velocity in an anticlockwise direction, and at an angieto the
normal. It rebounds off the surface (CoR) with a rebound velocity, an angular velocity , maybe
in a clockwise direction, and at angle[ to the normal.

U
Uy v Figure 4.1¢ Bounce of an elastic spinning ball against a rigid

R vy surface also including frictiofWhite, 2011)

> i

14

The tangential component if the incident will be opposed by the frictional féi@ayhich
will reduce the tangential component of the reflected velocity (frdmto 0 ) and reduces the
angular velocity, from to k, which may result in a reversal of the spin. Finally there is a reaction
force,Y, acting normally out of the surfa@s a consequence of the impact.

. @ bSgl2yQa flgazr GKS OKIFIy3aS Ay Y2YSyildzy 200«
impulse of the force producing it. The horizontal and vertical components equate as follows:

. 0Qoa v o (5.4)

. YQoa v o (5.5)

We can equate the change in momentum the impulsive torque produced b¥Dwhich acts at a

distancew from the centre of the ball. This is denoted by "OQdw and must be equal to the
difference between the angular momentum before and after the bounce.

G "'0Q6Q k  aQ1 K (5.6)
where Qrepresents the radius of the gyration of the ball. There we can state:

U D (5.7)
Althoughvarious different bounce conditiomaay occur we shall examine two major ones.

Case I The ball does not achieve enough angular velocity to roll, therefore slides though out the
duration of the impact process
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"O ‘ "Yandthus, "O0QO0 (5.8)
where* denotes the coefficient of kinetic friction (i.e. sliding) between the surface and the ball.
Using Equations 5.4, 5.5 and 5.8, we discover:
v o 6 U
“ 6 p 'QfromEquation5.7

Then from Equations 5.6 and 5.8:

Now for most sporting balls the moment of inerti@is equal to- & ¢ 8Therefore:

The conditions after the rebound are given by:

U 6 "0 p Q (5.9)
VI ¢ )] (5.10)
L —p Q 1 (5.11)

We knowo €& 6] 06 ando @ & [ — therefore using Equations 5.9 and 5.10
O WET
andfinally:

VOGEPOHE -~ p Q (5.12)

Case 2 The ball grips the surface before completion of impact, and rolls off the surface

The Equations (5.4) and (5.7) still apply for case 2. However, on this océsitirbe zero before
the ball leaves the surface.

Equation 4.4 to 4.6 yields:

Same as beforéD —d& @ and henceQ - and:
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6 0 —K ] (5.13)

If the ball is completely rolling before it leaves the surface, we can use the standard rotational
identity thatk  —and hence Equation 4.13 becomes:

To summarize, the conditions immediately followimgbound, in this case when the ball is
completely rolling before it leaves the surface, are given by:

— (5.14)
0 W (5.15)
T — (5.16)

Now to find the limitingcase for slipping to stop, and rolling to just begin before the ball leaves the
surface, is found by equating from case 2 in Equation 5.14 with that of case 1 in Equation 5.9.
Combing both these equations gives:

O p Q -0 W
Therefore the limiting condition for rolling to occur will be given by the equation:

o0 p Q -0 O (5.17)

5.14 and 5.1%jiving:

0OWET

Butasd O ®¢é€ i —

Hence:

0O GEFO G (5.18)

Worked Example 5.2
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Following a tennis serve, the ball hits the grass surface ati at an angle of 3Dto the
horizontal — ¢ &t . If there is a back spin pfjrindi'Q just before impact, calcula the angle of
rebound whereQ Ti&h TWE Q o 0B

First we need to figure out whether or not the ball has enough angudocity to roll before

breakingcontact with the court as that will be the deciding factor in whether Equatio br15.18
will be used. Using Equation 5.17:

o0 p Q -0
then rolling will occur:
6 Owéi vé@n ¢oai
0 O0i QeuvdTt Qe 1 @&a i
For rolling to occur:
W Up T -1 @ TBIoCp TITI
C® p&
Therefore rolling will occur, hence we will make use of Equation 5.18 in our further calculation

QO WeE FO WE

O WE -0 GYET
8
Pg 0 X— P&
N
OWET— PXPT
§ Ve U
The ball bounces off the ground just slightly higher than the approach angle, by 0.26

Summary

In this chapter we have looked at impact and bounce and how a ball with a differerre@aR of a
surface and come to the conclusion that both have an effect on the trajectory of arhallCoR is

the main physical parameter that describes bounce. Its values range between 0<e<l, where e=0
represents no bounce and e=1 representing a perecnce with impact velocity being equal to the
rebound velocity.

Chapter 67 Effects of spin
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6.1 z Introduction

In many ball sports, such as tennis, 4in or backspin maybe be applied to a tennis ball in order to
alter its flight path and the tne of flight. Backspin will allow a ball to hang for longer, therefore has
more time to travel further, topspin on the other hand will reduce the time of flight and cause the
parabolic curve to in a manner that emphasizes and tightens the radius of the @hite, 2011)

In tennis this allows the ball to transverse the court faster while both clearing the net and landing
within the baseline.

6.2 z Basic principles

Figure 6.1 shows how air flows over a ball which is morigly to left, while at the same time
spinning in a clckwise direction, this is known dse Magnus effectAs a spinning balls travels
through the air with a certain velocity such that both sides A and B from Figure 6.1 are beyond the
critical value (bdt sides are in turbulent flow), the boundary layer separation will advance forward
on the side of the ball that is spinning in opposite direction to the airflow. This is due to a reduction
in pressure drag in this particular region. Following on, the bawndayer will retreat further
towards the back of the ball on the side where spin is moving with airflow (B in Figure 6.1), as the
increased pressure drag holds the boundary layer close to the ball for longer

The irregular boundary layer separation dteethe balls spin leads to a deflection of the
611S 06SKAYR (GKS o0lfftd ¢KSNBF2NB>X bSsgiliz2yQa (KANR
acting upwards as a consequence of the downward pointing deflected wake. To summarise, the
momentum change dudo the wake deflection is balanced by a momentum change in the ball
causing it to move upwards, this is the Magnus fdidéite, 2011)

Ball direction
v

Figure 6.1¢ Flow lines around a spinning ball

If we take the lift and drag foreeon a spinning ball to héand O respectively, as before, we
assume the drag to be proportional to and the lift to be directly proportional to.
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Therefore:
0 QU 6" ® andd QU -6" 0L (6.1)

whered and 0 are the drag and lift coefficients respectfullyjs the density of the fluid) is the
crosssectional area of the projectieandd SAy 3 G(KS LINRP2SO0GAt SQa @St 20Al

¢l 1AyYy3 062 @defiicta8®arfi@NI Wel AGQ
QM —andQ —

Therefore the retardation due to drag will be:

- — (6.2)
and the acceleration due to lift is:
- QU (6.3)
With reference to Figure 6.3, the force along the projectile direction vector equates to:
a— a— aQi Q¢
— — Qi Q¢ — (6.4)

Therefore the net acceleration orthogonal to the trajectory will B0 "Q® € { Fhis acceleration

is assumed constant then the projectile is destined to travel on a perpetual circular path. However
the lift force will reduce over the duration of the flight leading to a path of increasing radius, hence
the force turning the projectd through the circle must be balanced by a centripetal force given by
a i 'FQOThe centripetal acceleration is given by:

Q Qoéi v—
So:

- 0 — (6.5)
It is necessary to integrate Equations @4dd 6.5 to obtain the equation of motion for a spinning
projectile. Note, although many trajectories in sport may have started their flight with launch

angles greater than, say 4, the projectile will still be less tham @for much of its flight the. If—
is assumed small then we may say thaQé r® & Q¢ i - (White, 2011) Equations 6.4 and 6.5

now become:
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. . (6.6)
and:

— 7 - (6.7)

Rearranging Equation 6yéelds:

integrating with respects to time with the boundary conditions that, at launch tilne,tc ¢ ®
0 , we obtain:

-y — (6.8)

Combining Equation 6.8 and 6.7 and substitutingifgrelds:

This can also be integrated with respects to time to attain an esgiom for the angle of the
projectile at any timeinto the flight for a given launch angle and a launch velocity .

o T — (6.9)

wherethe Tait variabléQ andQ may be obtained experimentally and are based on drag and lift of
the projectile.

If the projectile moves a cumulative distan€®i during its flight, the its corresponding
cumulative height will increase by an amountQ£Q iwhich equals—Qif we apply our assumption
of —being small. Therefore, its heiglit, at any timeois given by the following:

[ . —0Qi_ —Qb6. —0 Qb (6.10)

Using Equations 6.8 and 6.9 we can obtain an expressiea-tor

—0 o — (6.11)

Consequently, if Equation 6.11 is integrated again with respects we will obtain our expression
fori and each term will be considered separate.
First term yields:

—— o u0iTve @ vQlip —

The second term yields:

Page49



415104

0Qo, —0Q Qp — Qo

—0Q Qo —11bo 71

— 00 Mo —0v7Q WMiip —

And finally the third term yields:

Qo - 0o —p — Qo
-— — —11b0o 1
- — - _|Tp -

Now combining the three terms from Equation 6.10 we acquire an expression b&ing:

i 00— —00 Q —ilp — —0 -0 (6.12)

Again assuming a small trajectory angle such that i -p, the horizontal range at any point at
time ¢, is given by the following equation:

i _0Qo. —0o Qive @ TQilp — (6.13)

Looking at the equatiowe can notice thaeocoordinate is only actually dependent on the amount of
lift caused by top or back sp{iVhite, 2011)

Worked Example 6.1

A golf ball is driven at a launch angle ofl idthe horizontal plane with launch velocity pfa i

Calculate the horizontal and vertical positions 2 seconds into the flight and 4 seconds into the flight,

taking Tait variables) puvandQr ndmy ® |1 26 R2 (KSasS oIt asSEYyR2YLN
WE LAY f(Whte 201101 a SK

For 2 seconds:

i Qlip — puva Ip — @

Using equation 6.12:
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i — —00 Q —ilp — —0o -0

PUAB XV — XTOT® Y «lp —11Tp —

8 8

N 8 .
w¢ —w¢
WHLLT O B P PP A

For 4 seconds:

i Qiip — pva Tp —  poap
i o— —00 0 —ilp — ——0 -0
‘ . 8 . -
PLAP X V— X T Y cp — | Ip —
8 8 . 8 .
Wl — T

W ULUUPEBIL Q@ CAT p BLY

Looking at the results we can conclude that the heighate not that different at 2 seconds and 4

seconds. Also it is obvious that a drag force is in effect as there was not, the range at 4 seconds
would be double that at 2 seconds.

For the drag less and lift less cases:
For0 ¢ using Equation 3.3:
i Dow&i xmchépit podd
From Equation 3.4:
i DOI-QE-cd XM Q! - wui) poul Eg
C®P pP&C

T&a
For0 T using the same equations:
i DOoEi x T Oépit ¢ X O

[ 000 -d xmTo QE - OuBY moul gt
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T x@y
C@a

The results shows after 40 seconds, the lossless and drag less projectile has burrowed itself nearly
30m into the ground, when compared to the spun ball, &edonds, is still hanging in the air and in
motion around 17m above ground level. Consequently, there is a significant difference in the flight
path of the projectile when spin is exerted upon it.

Summary

This chapter has looked how spin can affect flight of a projectile and also the creation of the
Magnus effect and how it works is explained. We have now gone though all the fundamental physics
needed to model a flight path of a tennis ball and the following chapters will now concentrate more
on tenns and how it is played.

Chapter 7z Tennis and its beginnings

7.1 Z Introduction

No one is really quite sure exactly when and where tennis was originated, however most historian
believe 11" or 12" century monks were the people responsible for its creation. Having no rackets,
the monks would strike the ball with the palm of their hands and in doing so shout Tenez!, meaning
wi2 G hémame tehii{sdzas given to the game.

The game tennis quity began to gain popularity as rich aristocrats learned the game from
the French monks, so the nobles modifiteir courtyards into indoor courts. It was very popular in
France and England and only played indoors where the ball could be hit off walsyfenof tennis
was known as real tennis and Henry VIII of England was a big fan of the gametHa tmrne was
so popular that the Pope tried, and failed to have it banifelistory of tennis, 2010)Real tennis
compared b the modernday tennig S 1 y2¢ G2RIFI& KIFI&a | KdaAS RATFTFSNE)
hit around a seriesf walls with rooved galleries. Players won points by hitting the ball into netted
windows beneath the rooves. The court itself is marked withringolines and the net is five feet
high at each end, though it droops to three feet in the middderring the 18 and 19" century
however, real tennis began to lose popularity as new racket sports emerged in England and new
rackets were made.

CharlesGoodyear invented a new process for rubber called vulcanisation, which among
other effects made the material more bounitistory of tennis, 2010)This meant tennis balls were
now a lot more exuberant, and therefore has a hgleoefficient of restitution and consequently,
could be used outdoors on grass which called for an entirely new set of rules to be made. In
December 1873 Major Clapton Wingfield designed patented a version of the game. After the very
First Championshipgs KA OK ¢SNB KStR Ay [2YR2Yy Ay wmdptT OI ff
oldest tennis tournament, there was considerable debate on how to standardise thewhiek he
namedsphairistikeo Y OA Sy 4G DNBS{1 YSFyAy3a Wal AdversidnaftheJt | & A y =
rules was met with much criticism and therefore altered. Many believe Wingfield deserves much
credit for the development of modern tennis and its rules.

A young Socialite named Mary Ewing Outerbridge returned from Bermuda in 1874 in
Ameiica where she had met Major Wingfield. She laid out a tennis court at the Staton IsiaketC
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Club in New Brighton Island New York, and thus the first American National tournament was played
there in 1880.However there was still some animosity with tiheles as each tennis club were
implementing different rules and the tennis balls in Boston were larger than the ones used in New
York (Tennis, 2005)As a result the United States National Lawn Tennis Association (now United
States Tennis Association) was formed to standardize the rules and organize various different tennis
G2dzNy I YSyGaod [/ 2yaSlidsSyates Ay wmyy mshipskkSowsfnbviNg & | @
as the US Open, were held at Newport, Rhode Isl&sdTennis was also popular in France, England
and even by then Australia, where the French Open dates back to 1891, the Australian Open dating
back to 1905, and Wimbledon the oldest datiall the way back to 1877. Together these four events
are now referred to as the Grand Slams or Majors and are held once a year in the corresponding
countries, compiling of 4 Grand Slams or Majors a year. Th&gats in tennis are considered the
most important and prestigiougournaments in the calendar as they are the biggest and give the
most points to ranking. It is also very difficult to win a Grand Slam since one must win 7 straight
matches and if you lose, you are out off the competition.

The irtervention of the All England Club was significant to the development of the game.
tKS8 RSOARSR (2 RAGOK 2Ay3aFTASERQA 2RR &Kl LIS 0O2dz
croquet which was very popular at the time. By 1882, the All Englandh@tlilmade various other
OKIy3aSa (2 2Ay3aFASERQA 2NRIAYLFE 3ILYS o8y

Lowering the net

Allowing overarm serving

Reducing the size of the service box
LYGNRRdzOAY3I GKS WfSGQ Nz S

= =4 =4 =N

The rules have remained virtually the same with just one major change beirgttbéuction of the
tie break rule in 1971 by James Van Af€ennis, 2005)

K JACOB'S CREEK LKIA) [KIA] Al b ANZ ANZ
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Figure7.2shows the Australian open 2012 seffinal being played byRoger Federer and Rafael Nadhbard court)
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Figure 7.3 showthe French Oper2011 Final being played bgoger Federer and Rafael Nadealay court)

TSONGA 0 0115 skysport HD 1 [LivE]

FEDERER |0

Figure 7.4 shows Wimbledon 2011 quarténal eing played by Roger Federer and\llfred Tsongggrass court)
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Figure 7.5 shows the US Open being played by Roger Federer and Novak Dj@iterdcourt)

7.1.1 - Court size

Through the yearsince tennis was first played, there has been many different types of court used.
Giving credit to the All England Clubodern day tennis is now played on a rectangular flat surface,
which usually is grass, clay, a hard court of concrete or asphalt and occasionally carpet for indoor
courts. All these different types of surfaces will have a different affect on the tenliissbane are
quicker than others, and some make the ball bounce a lot higher. The 4 Grand Slams are played on
different types of surfaces. The Australian Open held in Jgnaiathe start of the year, is played on

a hard plexicushiosurface, the French @p held around Maylune, is played on a clay surface,
Wimbledon which is held in the summer, Juhdy is played on Grass and is considered the quickest
surface, and the finally the US Open held around Au§esttember is played on hard Deco Turf
(Tennis, 2006)

The court itselfs 78 feet(23.77m) long, and 27 feet(8.23m) wide for singles matches and 36
feet(10.97m) wide for doubles matches. Also in order to for tennis players to retrieve over run and
wide balls, additnal space is required around the colfitennis, 2006)A net is stretched across
almost the full width of the court just short of the doubles line parallel with the baseline, dividing the
court into two equal sides. The net itself is not all one level across, at the two ends the net is at its
highest being 3det 6 inches (1.07m) high and exactly 3 feet (91.4cm) high in the centre. So the net
droops in the middle similar to that used in real tennis.
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Figure 7.6shows the measurements of a tennis court

7.1.2 z Tennis balls

Modern day tennis balls must comply with the ITF regulations covering size, bounce, deformation
FYR O2f2dz2NX» ¢KS ol ftfQa ReylYAO LISNF2mpertigdS OKIF N
There are three types of tennis balls. Type 1 being fast speed, which are used on slow paced court
surfaces such as clay courts. Type 2 balls being medium speed, which are used on hard court
surfaces, and type 3 balls being slow speed, whiehuaed for fast court surfaces such as g(#EB,
2006)

The balls themselves can have different diameters. They can either be the traditional
diameter of 6.63cm for type 1 and type 2 balls, or a slightly larger diameter76ffér type 1 and
type 2 balls. Table 7.1 shows the specifications the ball should conform by.
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Type 1 (Fast)

Type 2 (Medium)’

Type 3 (Slow)?

High Altitude’

Weight {Mass)

1.975-2 095 ounces
(56.0-59.4 grams)

1.975-2 095 ounces
(56.0-59.4 grams)

1.975-2 095 ounces
(56.0-59.4 grams)

1.975-2.095 ounces
(56.0-59 4 grams)

Size

2 575-2.700 inches
(6.541-6.858 cm)

2 475-2.700 inches
(6.541-6.858 cm)

2.750-2 875 inches
(6.985-7.303 cm)

2 575-2.700 inches
(6.541-6.858 cm)

Rebound

53-58 inches
(135-147 cm)

53-58 inches
(135-147 cm)

53-58 inches
(135-147 cm)

48-63 inches
(122-135 cm)

Forward
[:-efr::'rmatir::m'i

0.195-0.235 inches
(0.495-0.597 cm)

0.220-0.290 inches
(0.659-0.737 cm)

0.220-0.290 inches
(0.659-0.737 cm)

0.220-0.290 inches
(0.559-0.737 cm)

Return

Deformation*

0.265-0.360 inches
(0.673-0.914 cm)

0.315-0.425 inches
(0.800-1.080 cm)

0.315-0.425 inches
(0.800-1.080 cm)

0.315-0.425 inches
(0.800-1.080 cm)

Table 7.1¢ Regulation of ball specificationdTF, 2006)

7.1.3¢ Dynamic properties of tennis

Incoming ball —

linear racket
(a) movement

Outgoing ball —
angular vel = o

angularvel =Q
A u
u,

Angular

velocity of
racket before
impact Q'

Racket
inclination
angle

Angular

velocity of
racket before
impact o'

Figure7.7 (a, b)Coordinate axes for racket/ball impact

415104

Racket

Angle of
linear racket
(b) movement

We shall first begin by calculating the impulse during impact into the normal and tangential
components with reference to Figure 7.7. The equations for change in angular and liner momentum
for both racket and ball & given by:

For Ball For racket
Go 6 N 0 o 7Y 0 (7.1)
o o N Do Y 0 (7.2)
a u N 01 oom (7.3)
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where & is the mass of the tennis baiy, is the change in momentum in a direction normal to the

racket surfacep is the speed of the racket norm& the racket surface after impact is the

speed of racket normal to the racket before impactis the radius of the ballds the momentto

inertia of the ball,@s the moment of inertia of the racket is the mass of the rackéty R m A & (K¢

angular velocity of the ball before impatising table 2.6 we knol®@ ——.

The relative sliding velocity)Y at the moment of impact maye characterised as a
difference in the tangential racket and ball velocities, with it any sliding which me be caused by spin
which will occur on impadiWWhite, 2011)

Figure 7.8 International Tennis
Federation (ITF) Surface Pace Rating (SPR)
values(White, 2011)
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